Journal of Atmospheric Chemistry

Current research reports and chronological list of recent articles.


The international scientific Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the atmosphere, with particular emphasis on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional scientific articles see Current Chemistry Research Articles. Magazines with similar content (atmospheric chemistry):

 - Atmospheric Chemistry and Physics.



Journal of Atmospheric Chemistry - Abstracts



Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach

Abstract

The hydroxyl radical (OH) is important in both tropospheric and stratospheric chemical processes that occur in Earth’s atmosphere. The OH radical can also strongly hydrogen-bond to form complexes with other atmospheric constituents, like water molecules. Consequently, there is potential for altered reaction dynamics/kinetics as a result of this complexation. Without direct measurements of the abundances of such complexes in Earth’s atmosphere, we have adopted a theoretical approach to determine such abundances. Electronic structures, enthalpies and free Gibbs energies of formation of OH, H2O and H2O-HO were calculated at CCSD(T) and QCISD(T) levels of theory with either 6–311++G(2d,2p) or aug-cc-pVTZ basis. Statistical thermodynamic concepts were then used to assess the abundance of the complex as function of altitude.


Datum: 01.12.2017


Trans-boundary and in-country transport of air pollutants observed in Kobe, Japan by high frequent filter pack sampling method

Abstract

The seasonal intensive sampling of gases and particulate matter in ambient air was conducted at the site established in urban area of Japan to study the seasonal difference of the temporal variation of gases and particulate matter concentrations in urban atmosphere as well as to illustrate the different transport regimes that impacts air pollutants. The sample was collected by the four-stage filter-pack method with 6-h interval for one week in four seasons (spring, summer, autumn and winter). The trans-boundary transport of air pollutants with high concentration was characteristically observed in the spring sampling. On the other hand, we could successfully detect the in-country transports of air pollutants in the summer sampling. Four-season’s intensive survey considered, we could show the characteristic transport of air pollutants to provide the episodic high concentration for ambient air in the urban area of Japan, and successfully illustrate the seasonal-dependent transport regimes to impact on air pollutants.


Datum: 01.12.2017


Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi

Abstract

The paper presents the temporal variations of surface ozone (O3) and its precursors (oxides of nitrogen (NOX), carbon monoxide (CO), methane (CH4) and non-methane hydrocarbons (NMHCs)) along with particulate matter (PM10 and PM2.5) and their relationship with meteorology during January 2012 to December 2014 at an urban site of Delhi, India. The mean mixing ratio of surface O3, NOX, CO, CH4 and NMHCs were 29.5 ± 7.3 ppb, 34.7 ± 11.2 ppb, 1.82 ± 0.52 ppm, 3.07 ± 0.37 ppm and 0.53 ± 0.17 ppm, respectively. This study also comprises an analysis of the relation between UV irradiance and surface O3. A relationship between the total oxidant concentrations (OX) and NOX has been used to identify the regional background O3 values and the local levels of primary pollution. An attempt has been made to identify the existence of NOX or NMHC sensitive regime by charting out relationships between O3, NOX and NMHCs. The respective high pollution periods of surface O3 and PM differ on a seasonal timescale. Linear regression analysis has been used to quantify the negative influence of the chemical constituents of PM (elemental carbon, NO3 , SO4 2−) on O3 values. Statistical validation using bivariate correlation analysis, multiple linear regression (MLR) analysis and principal component analysis (PCA) strongly describes the intricate relationships among the aforesaid variables and meteorology. Potential Source Contribution Function (PSCF) and Concentration Weighted Trajectory (CWT) analysis indicated upper Indo-Gangetic Plain (IGP) as a significant source region of O3 precursor gases contributing for O3 values at the study site.


Datum: 01.12.2017


Chemical characteristics and deposition fluxes of dust-carbon mixed coarse aerosols at three sites of Delhi, NCR

Abstract

The present paper reports chemistry and fluxes of dust-carbon mixed coarse particles. For the purpose of this study, different carbonaceous fractions i.e. organic carbon ((OC), elemental carbon (EC) and carbonate carbon (CC) of atmospheric dust and their respective local soils were quantified at three sites of National Capital Region (NCR) of Delhi viz. Jawaharlal Nehru University campus (JNU), Connaught Place (CP) and Vishali area of Ghaziabad (GB). It has been observed that the OC and EC levels were approximately five to nine times higher in urban atmospheric dust than their corresponding soils, whereas CC levels were about three times higher than the corresponding soils. Average dustfall fluxes were significantly different at all the sites due to their different land-use patterns. At urban background site (JNU), the dust flux was lowest (172 mg/m2/day) followed by CP, a commercial site, (192 mg/m2/day) and GB, an industrial/residential area, (302 mg/m2/day). Similar to the dustfall pattern, the mean values of OC, EC and CC deposition fluxes were also observed to be lowest at JNU (9.2, 0.8 and 1.0 mg/m2/day, respectively) as compared to CP (12.2, 1.2 and 1.3 mg/m2/day, respectively) and GB sites (11.1, 1.1 and 1.4 mg/m2/day, respectively). Interestingly, unlike fine mode, different correlation pattern of OC and EC in coarse mode dust aerosols at three sites has suggested their independent deposition processes and source contribution. Fluxes of major water soluble inorganic ions (Na+, NH4 +, K+, Ca2+, Mg2+, F, Cl, NO3 and SO4 2−) were also determined. Ca2+, Cl and SO4 2− were found to be the major ionic species of water soluble fraction of the urban dust at all the sites. These interactions are corroborated by the morphology of the mixed aerosols. High levels of measured chemical species and their spatial distribution revealed close correspondence with the local emissions from transport, industries, biomass burning, road dust and construction activities etc.


Datum: 01.12.2017


Size distribution and chemical composition of summer aerosols over Southern Ocean and the Antarctic region

Abstract

The size distribution of atmospheric aerosols together with their composition, sources and sinks, is a key element in understanding aerosol effects on the Earth’s climate. Aerosol particle size distribution and chemical composition were measured over the Southern Ocean and at Antarctic region during December 2009–March 2010. Aerosol samples were collected using multi-stage low volume Air Sampler, and an aerosol size spectrometer was employed to monitor PM mass concentration continuously. The mean mass concentrations for PM10, PM2.5 and PM1 were 1.5, 1.0 and 0.6 μg/m3, respectively at the Bharati station and were almost 2.5 times higher at the Maitri station. The mass size distribution of the aerosols measured by using a low volume air sampler exhibited a bimodal feature with a peak each in the size range of 0.4 to 0.7 μm and 3 to 5 μm. The difference in concentrations between the two locations for fine particles was comparatively lower than that for simultaneously measured coarse particles. Aerosol samples were analyzed for various water-soluble ionic constituents e.g. Na+, K+, Ca2+, Mg2+, NH4 +, Cl, SO4 2− and NO3 . Sea-salt aerosols contributed to 86% of the measured mass over the Southern Ocean, 80% over Bharati and 76% at Maitri. The Southern Ocean being the most significant source of the particles during summer time, controls the aerosols at Bharati and Maitri sites. The present study will be helpful in simulating atmospheric processes responsible for aerosol characterization over coastal Antarctica and understanding its environmental implications related to radiation budget and climate over this region.


Datum: 01.12.2017


Assessment of PM 2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation

Abstract

Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10–2.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10–2.5 were found to be 153.6 ± 59.8, 33.5 ± 15.9, 6.9 ± 3.9 and 91.1 ± 99.9 μg m−3, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO4 2− and NO3 ) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10–2.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18 ± 1.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910 ± 280 and 1221 ± 371 Mm−1) in post-monsoon and winter and lowest in monsoon (363 ± 110 and 457 ± 133 Mm−1) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6 × OC) accounts for ~39 % and ~48 % of the bext, followed by (NH4)2SO4 (~21 % and ~24 %) and EC (~13 % and ~10 %), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2 = 0.95, root mean square error = 38 % and mean bias error = 28 %) and are strongly related to visibility impairment (r = −0.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi.


Datum: 01.12.2017


Carbonaceous and inorganic species in PM 10 during wintertime over Giridih, Jharkhand (India)

Abstract

Ambient concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ionic components (WSIC) of PM10 were studied at Giridih, Jharkhand, a sub-urban site near the Indo Gangatic Plain (IGP) of India during two consecutive winter seasons (November 2011–February 2012 and November 2012–February 2013). The abundance of carbonaceous and water soluble inorganic species of PM10 was recorded at the study site of Giridih. During winter 2011–12, the average concentrations of PM10, OC, EC and WSIC were 180.2 ± 46.4; 37.2 ± 6.2; 15.2 ± 5.4 and 18.0 ± 5.1 μg m−3, respectively. Similar concentrations of PM10, OC, EC and WSIC were also recorded during winter 2012–13. In the present case, a positive linear trend is observed between OC and EC at sampling site of Giridih indicates the coal burning, as well as dispersed coal powder and vehicular emissions may be the source of carbonaceous aerosols. The principal components analysis (PCA) also identifies the contribution of coal burning  + soil dust, vehicular emissions + biomass burning and seconday aerosol to PM10 mass concentration at the study site. Backward trajectoy and potential source contributing function (PSCF) analysis indicated that the aerosols being transported to Giridih from upwind IGP (Punjab, Haryana, Uttar Pradesh and Bihar) and surrounding region.


Datum: 21.11.2017


Characterization of brown carbon constituents of benzene secondary organic aerosol aged with ammonia

Abstract

Nitrogen-containing organic compounds (NOC) formed from secondary organic aerosols (SOA) age via reaction with reduced nitrogen species are a vital class of brown carbon compounds. NOC compounds from ammonia (NH3) gas-aging of benzene SOA were investigated in present study, and the experiments were performed by irradiating benzene/CH3ONO/NO/NH3 air mixtures in a home-made smog chamber. The particulate NOC products of aged benzene SOA in the presence of NH3 were measured by UV-Vis spectrophotometer, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with Fuzzy C-Means (FCM) clustering algorithm, respectively. Experimental results demonstrated that NH3 has significant promotion effect on benzene SOA formation. Organic ammonium salts, such as ammonium glyoxylate, ammonium 6-oxo-2,4-hexadienoiclate, which are formed from NH3 reactions with gaseous organic acids were detected as the major particulate NOC products of NH3-aged benzene SOA. 1H–imidazole, 1H–imidazole-2-carbaldehyde and other imidazole products via the heterogeneous reactions between NH3 and dialdehydes of benzene SOA were successfully detected as important brown carbon constituents. The formation of imidazole products suggests that some ambient particles contained organonitrogen compounds may be come from this mechanism. The results of this study may provide valuable information for discussing NH3 deposition and SOA aging mechanisms.


Datum: 29.10.2017


The role of precursor emissions on ground level ozone concentration during summer season in Poland

Abstract

Three online coupled chemical transport model simulations were analyzed for three summer months of 2015 in Poland. One of them was run with default emission inventory, the other two with NOx and VOC emissions reduced by 30%, respectively. Obtained ozone concentrations were evaluated with data from air quality measurement stations and ozone sensitivity to precursor emissions was estimated by ozone concentration differences between simulations and with the use of indicator ratios. They were calculated based on modeled mixing ratios of ozone, total reactive nitrogen and its components, nitric acid and hydrogen peroxide. The results show that the model overestimates ozone concentrations with the largest errors in the morning and evening, which is primarily related to the way vertical mixing is resolved by the model. Better model performance for ozone is achieved in rural than urban environment, as PBL and mixing mechanisms play more significant role in urban areas. Modeled ozone shows mixed sensitivity to precursor concentrations, similarly to other European regions, but indicator ratios have different values than are found in literature, particularly H2O2/HNO3 is larger than in southern Europe. However, indicator ratios often differ between locations and transition values need to be established individually for a given region.


Datum: 23.10.2017


Macroseepage of methane and light alkanes at the La Brea tar pits in Los Angeles

Abstract

Geologic seepage of methane and light (C2-C5) alkanes was measured at the La Brea Tar Pits in Los Angeles. Samples were collected using flux chambers with stainless steel canisters and analyzed using gas chromatography. Average seepage rates from individual seepage sites were 970 ± 330 mg/h of methane, 14.0 ± 5.5 mg/h of ethane, 9.1 ± 3.7 mg/h of propane, 3.7 ± 1.6 mg/h of i-butane, 0.33 ± 0.16 mg/h of n-butane, 260 ± 120 μg/h of i-pentane, and 5.3 ± 1.9 μg/h of n-pentane, while maximum seepage rates exceeded 17 g/h of methane, 270 mg/h of ethane, 190 mg/h of propane, 95 mg/h of i-butane, 10 mg/h of n-butane, 7 mg/h of i-pentane, and 0.1 mg/h of n-pentane. These absolute fluxes have an additional unknown amount of error associated with them due to sampling methodology, and should be taken as the lower limit of emissions. Samples collected revealed generally dry gas, with high methane emissions relative to the light alkanes. Overall emissions from the tar pits were found to come not only from the active geologic seepage, but also from the outgassing of the standing asphalt at the site. Using the gas ratios, which are negligibly affected by errors introduced by sampling methodology, observed in this study, daily emissions of C2 – C5 alkanes from the La Brea area were estimated to be 4.7 ± 1.6 Mg, which represents 2–3 % of total emissions in the entire Los Angeles region.


Datum: 01.09.2017


Erratum to: Uptake of nitrogen dioxide (NO 2 ) on acidic aqueous humic acid (HA) solutions as a missing daytime nitrous acid (HONO) surface source


Datum: 01.09.2017


Identification and quantification of carbonyl-containing α-pinene ozonolysis products using O - tert -butylhydroxylamine hydrochloride

Abstract

The yields of carbonyl-containing reaction products from the ozonolysis of α-pinene have been investigated using concentrations of ozone found in the indoor environment ([O3] ≤ 100 ppb). An impinger was used to collect gas-phase oxidation products in water, where the derivatization agent O-tert-butylhydroxylamine hydrochloride (TBOX) and gas chromatography-mass spectrometry were used to identify carbonyl-containing species. Seven carbonyl-containing products were observed. The yield of the primary product, pinonaldehyde was measured to be 76 %. Using cyclohexane as a hydroxyl radical (∙OH) scavenger, the yield of pinonaldehyde decreased to 46 %, indicating the influence secondary OH radicals have on α-pinene ozonolysis products. Furthermore, the use of TBOX, a small molecular weight derivatization agent, allowed for the acquisition of the first mass spectral data of oxopinonaldehyde, a tricarbonyl reaction product of α-pinene ozonolysis. The techniques described herein allow for an effective method for the collection and identification of terpene oxidation products in the indoor environment.


Datum: 01.09.2017


Ozone structure over the equatorial Andes from balloon-borne observations and zonal connection with two tropical sea level sites

Abstract

In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.


Datum: 01.09.2017


Uptake of nitrogen dioxide (NO 2 ) on acidic aqueous humic acid (HA) solutions as a missing daytime nitrous acid (HONO) surface source

Abstract

A comprehensive kinetic study of a potential daytime nitrous acid (HONO) source reaction, the photoenhanced reduction reaction of the nitrogen dioxide (NO2) on acidic humic acid (HA), was completed using a wetted-wall flow tube (WWFT) (Fickert et al.: J. Phys. Chem. A. 102, 10689, 1998) photoreactor integrated with a high sensitivity HONO analyser (Wall et al.: J. Atmos. Chem. 55, 31–54, 2006; Huang et al.: Atmos. Environ. 36, 2225–2235, 2002). The nature of this reaction, is of great interest since recently observed, unpredictably high HONO daytime concentrations demand its ordinarily proposed heterogeneous source to proceed 60 times more rapidly at noon than during the night (Kleffmann et al.: ChemPhysChem 8, 1137–1144, 2007). This study investigated the nature of the reduction reaction with simulated colloidal HA aqueous solutions characteristic of anaerobic environmental conditions, varying in acidity, concentration and composition. Typical urban NO2 levels were investigated. Increasing photoenhanced HONO production with weakening solution acidity was detected due to increased deprotonation of the carboxyl groups within the humic acid. It was deduced that the acidic HA substrate contains numerous feasible chromophoric sensitizer units capable of photochemically reducing NO2 to HONO, owing to its ‘biofilm’ (Donlan, 2002) function under UV exposure. The mechanism was found to be more effective for HA standards with higher levels of ‘bioactivity’ (refractivity). Using a complex mathematical model developed, incorporating both chemistry and diffusion, reaction probability datasets were produced from the experimental data, providing evidence that this is, indeed, an environmentally important daytime HONO surface source reaction. The parameters required to scale up the data of the photoreactor to that of a regional rural/urban scale were assessed.


Datum: 01.09.2017


Modeling of hygroscopicity parameter kappa of organic aerosols using quantitative structure-property relationships

Abstract

The hygroscopicity of organic aerosol in the atmosphere can be represented by a semi-empirical single parameter, κ. In this work we test possibilities for developing quantitative structure-property relationship (QSPR) models for κ based on chemical similarity. Models were developed in two ways: by manually assessing the suitability of several plausible physico-chemical descriptors; and by systematically evaluating hundreds of constitutional (e.g. number of particular atoms, bond types, molecular weight,...), topological, electrostatic, geometrical and quantum-chemical descriptors with the QSPR modelling software CODESSA (COmprehensive DEscriptors for Structural and Statistical Analysis). A set of 74 compounds with measured κ values was taken from the literature and prediction capabilities of the developed models were evaluated by leave-one-out cross-validation procedure. A 5-parameter linear regression model obtained with CODESSA was found to be the most suitable. Among the five descriptors, the two providing the highest contributions to the total variance were found to be (i) the final heat of formation divided by the number of atoms (69 %) and (ii) the ratio of molecular weight and molecular volume (16 %), although other topological and electrostatic descriptors were also of non-negligible importance for prediction of κ. The squared correlation coefficient and the root mean square error of a leave-one-out cross-validation procedure were 0.80 and 0.037, respectively. The results show that quantitative structure-property relationship approaches are useful for modeling κ.


Datum: 01.09.2017


Water-soluble inorganic ions of size-differentiated atmospheric particles from a suburban site of Mexico City

Abstract

During the MILAGRO campaign, March 2006, eight-stage cut impactors were used to sample atmospheric particles at Tecámac (T1 supersite), towards the northeast edge of the Mexico City Metropolitan Area, collecting fresh local emissions and aged pollutants produced in Mexico City. Particle samples were analyzed to determine total mass concentrations of Ca2+, Mg2+, NH4 +, K+, Cl, SO4 2−, and NO3 . Average concentrations were 22.1 ± 7.2 μg m−3 for PM10 and 18.3 ± 6.2 μg m−3 for PM1.8. A good correlation between PM10 and PM1.8, without influence from wind patterns, indicates that local emissions are more important than the city’s pollution transported to the site, despite the fact that Tecámac is just 40 km away from Mexico City. A lack of diurnal patterns in the PM2.5/PM1.8 ratio supports this conclusion. The inorganic composition of particles suggests that vehicles, soil resuspension, and industries are the main pollutant sources. Finally, the particles were found to be neutralized, in agreement with observations in the Mexico City Metropolitan Area.


Datum: 21.08.2017


Long-term high-frequency measurements of dibromomethane in the atmosphere at algae-rich and algae-poor coastal sites

Abstract

Dibromomethane (CH2Br2), a natural stratospheric ozone depleting substance, is mostly emitted from the ocean, but the relative importance of coastal (or macroalgae) and open ocean emissions is unknown. We made long-term high-frequency measurements of CH2Br2 concentrations at two remote coastal sites in Japan, on the subtropical Hateruma Island (poor in macroalgae) and at Cape Ochiishi (rich in macroalgae). CH2Br2 concentrations at Hateruma showed prominent seasonal variation, being lower in summer (around 0.94 ppt) than in winter (around 1.23 ppt). In contrast, CH2Br2 concentrations at Ochiishi were highly variable, often exceeding 2 ppt in the summer but with minimum baseline concentrations close to those from Hateruma; in the winter the concentrations were almost constant at about 1.3 ppt. Analysis of the data suggested that (1) emissions from macroalgae were not likely to extend offshore, but instead were localized near the shore, (2) strong macroalgal emissions of CH2Br2 were almost limited to the summer, but it was not reflected in the seasonality of the baseline concentrations of CH2Br2 in the atmosphere, and therefore (3) macroalgal or coastal emissions of CH2Br2 in the temperate zone might have a rather limited contribution to the global CH2Br2 sources. These findings are especially important for the understanding of the tropospheric and stratospheric bromine budget.


Datum: 16.08.2017


Atmospheric hydroperoxides measured over a rural site in central Japan during spring: helicopter-borne measurements

Abstract

Measurements of the concentrations of H2O2 and methyl hydroperoxide (MHP), O3, and SO2 over Imizu City, Toyama Prefecture, Japan were performed in March using a helicopter. H2O2 concentrations were higher at an altitude of approximately 2,400 m (8,000 ft). The H2O2 concentrations (< 0.8 ppb) in the spring were much lower than those observed during the summer observations. MHP was also higher in the high-altitude atmosphere. Lower concentrations of H2O2 were observed when high air pollutants were actively transported from Asian continent. The concentrations of H2O2 were mostly lower than those of SO2; this condition is called oxidant limitation. If H2O2 concentration rises in cold months, the acidification of cloud water may be accelerated at high elevations in central Japan where air pollution is actively transported.


Datum: 04.08.2017


Concentrations of metallic elements in long-range-transported aerosols measured simultaneously at three coastal sites in China and Japan

Abstract

To determine the effects of long-range transport of aerosols from an upwind area in East Asia to a downwind area in Japan, we chemically analyzed aerosols collected simultaneously on Tuoji Island (Shandong Province, China), Fukue Island (Nagasaki Prefecture, Japan), and Cape Hedo (Okinawa Prefecture, Japan). We focused on changes in the metallic composition of PM2.5 aerosols during long-range transport. The average mass concentrations of PM2.5 at the three sites decreased in the order Tuoji Island > Fukue Island ≈ Cape Hedo (48.3 ± 4.5, 13.9 ± 1.5, and 13.2 ± 0.9 μg/m3, respectively). The fraction of coarse particles in total suspended particles estimated by (1–PM2.5/TSP) was highest on Cape Hedo, indicating that the contribution of sea salts was increased by long-range transport of the aerosols over the ocean. Enrichment factor analysis revealed that at all three sites, Al, K, Ca, Mn, Fe, Co, Sr, and Ba originated from soil; whereas Cr, Ni, Cu, Zn, As, Mo, Ag, Cd, Sn, Sb, Tl, and P appeared to be of anthropogenic origin. Na was the most abundant element on Cape Hedo, indicating the addition of sea salts during aerosol transport. The V concentration was highest at Fukue Island, which was ascribed to V emission from ships. Sixty-one percent of the V on Fukue Island and 62% of the V on Cape Hedo were determined to have originated from ships, implicating of data obtained on dates during which backward trajectory analysis indicated that the same air mass passed over Tuoji Island, Fukue Island, and Cape Hedo in that order.


Datum: 07.06.2017


Introduction to special issue on natural halocarbons in the atmosphere


Datum: 01.06.2017






Information about this site:

Last update: 03.02.2016

The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.

To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!

Topic: Current, research, scientific, atmospheric chemistry, journal, letters, list, recent, articles.








(C) 1996 - 2017 Internetchemistry










Current Chemistry Job Vacancies:

[more job vacancies]