Journal of Atmospheric Chemistry

Current research reports and chronological list of recent articles.


The international scientific Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the atmosphere, with particular emphasis on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional scientific articles see Current Chemistry Research Articles. Magazines with similar content (atmospheric chemistry):

 - Atmospheric Chemistry and Physics.



Journal of Atmospheric Chemistry - Abstracts



Rainwater chemistry and bulk atmospheric deposition in a tropical semiarid ecosystem: the Brazilian Caatinga

Abstract

We assessed the rainwater chemistry, the potential sources of its main inorganic components and bulk atmospheric deposition in a rural tropical semiarid region in the Brazilian Caatinga. Rainfall samples were collected during two wet seasons, one during an extremely dry year (2012) and one during a year with normal rainfall (2013). According to measurements of the main inorganic ions in the rainwater (H+, Na+, NH4 +, K+, Ca2+, Mg2+, Cl, NO3 , and SO4 2−), no differences were observed in the total ionic charge between the two investigated wet seasons. However, Ca2+, K+, NH4 + and NO3 were significant higher in the wetter year (p < 0.05) which was attributed to anthropogenic activities, such as organic fertilizer applications. The total ionic contents of the rainwater suggested a dominant marine contribution, accounting for 76 % and 58 % of the rainwater in 2012 and 2013, respectively. The sum of the non-sea-salt fractions of Cl, SO4 2−, Mg2+, Ca2+ and K+ were 19 % and 33 % in 2012 and 2013, and the nitrogenous compounds accounted for 2.8 % and 6.0 % of the total ionic contents in 2012 and 2013, respectively. The ionic ratios suggested that Mg2+ was probably the main neutralizing constituent of rainwater acidity, followed by Ca2+. We observed a low bulk atmospheric deposition of all major rainwater ions during both wet seasons. Regarding nitrogen deposition, we estimated slightly lower annual inputs than previous global estimates. Our findings contribute to the understanding of rainfall chemistry in northeastern Brazil by providing baseline information for a previously unstudied tropical semiarid ecosystem.


Datum: 28.06.2016


Optical properties and chemical apportionment of summertime PM 2.5 in the suburb of Nanjing

Abstract

A field measurement of aerosol optical properties and chemical composition was carried out from August 25, 2012 to September 6, 2012 in Nanjing, China. A three-wavelength Photo-Acoustic Soot Spectrometer (PASS-3) was used to measure aerosol scattering and absorption coefficient (B sca and B abs ) with the wavelength dependent (405, 532, 781 nm). Samples were also collected by a Particle into Liquid Sampler (PILS) with a time resolution of 1 hour and water soluble chemical composition was analyzed by ion chromatography (IC). The hourly average B sca were 239.9 ± 115.3, 185.9 ± 99.3 and 93.8 ± 59.8 Mm−1 while the average B abs were 33.5 ± 21.8, 23.9 ± 15.7 and 16.7 ± 11.7 Mm−1 for 405, 532 and 781 nm. The air mass from Shandong province to Northwest of Nanjing (SN) brought rich chemical composition which can enhance aerosol optical properties. The largest B sca (~389.9, 321.9, 180.5 Mm−1), B abs (~59.7, 43.0, 31.0 Mm−1), ω532 (~0.89) and lowest visibility (~3.2Km), Å sca (405/781) (~1.19) were observed during SN period. The mass concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ions (NH4 +, K+, NO3 , and SO4 2−) also continued to increase. However, aerosol optical properties and chemical composition kept stable for the episode with the air mass from Oceanic Regions (OR). Ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), organic mass (OM), elemental carbon (EC), fine soil (FS) and sea salt (SS) contributed 49.1, 4.0, 31.6, 9.3, 5.9, and 0.1 % to the total extinction coefficient in summer. (NH4)2SO4, OM and EC were dominant chemical components and the total contribution of them reached to 90 % of the dry aerosol extinction. The proportion of (NH4)2SO4 increased whereas OM and EC showed a decrease during SN period. Our study indicated that the summertime aerosol pollution at the northern suburb of Nanjing was mainly attributed to agricultural biomass burning and secondary aerosol formation. The long-range transport plays an important role in the formation of haze episodes in summertime of Nanjing.


Datum: 01.06.2016


Carbon isotopic ( 14 C and 13 C) characterization of fossil-fuel derived dissolved organic carbon in wet precipitation in Shandong Province, China

Abstract

We present results from a 1-year study of radiocarbon and stable carbon isotope measurement of dissolved organic carbon (DOC) of wet precipitation samples collected in the Shandong province of China. A total of 32 rainfall and 4 snow samples were collected from two coastal cities (Qingdao and Yantai) and one inland site (Taian) during 2014. Concentrations of DOC in the rainwater and snow samples varied widely from 28 to 616 μM. In general, rainwater originating from marine sources had relatively low DOC concentrations compared with continentally generated precipitation. Values of δ13C-DOC and Δ14C-DOC in the snow and rainwater ranged from −19.0 to −29.4 ‰ and −23 to −494 ‰, with corresponding radiocarbon ages of 125 to 5410 years before present. The dominant DOC in the wet precipitation had a relatively old 14C age (average 2841 years) and a depleted 13C value (average −24.4 ‰), indicating the mixing of contemporary organic carbon with 14C-depleted fossil fuel-derived soluble organic carbon in the atmosphere. Using a dual isotopic two-endmember model, we calculate that 7 % to 52 % of DOC in the snow and rainfall originated from fossil fuels. It is estimated that the flux of DOC in continental rainfall of China is 23 × 1012 g C yr−1 and of this, 7.1 × 1012 g C yr−1 could be fossil-fuel OC. On a global scale, the DOC flux in rainfall is estimated to be 357 Tg C yr−1, and 110 Tg C yr−1 could be fossil fuel-derived. Our study demonstrates that wet precipitation is an important removal process for old fossil fuel carbon from the atmosphere. This removal mechanism could play an important role in the carbon cycle, especially for the anthropogenically derived fraction, and it should be taken into consideration in global carbon cycle models.


Datum: 01.06.2016


Characterisation of water-soluble organic aerosols at a site on the southwest coast of India

Abstract

Aerosol samples collected over a tropical location, Thumba, southernmost West Coast of India were analyzed for the abundance of homologous dicarboxylic acids (C2 to C12), oxocarboxylic acids (ωC2 to ωC9, pyruvic acid), α-dicarbonyls (glyoxal and methylglyoxal), organic and elemental carbon. Among the measured organics, oxalic acid was found to be the most abundant species followed by succinic and/or malonic acids. As oxoacid and α-carbonyl groups, glyoxylic acid and glyoxal, respectively, were observed to be dominant. On average, dicarboxylic acids accounted almost 2.1 ± 0.7 % of the aerosol total organic carbon. Among the aerosols over Thumba, two types of formation pathways were noticed for oxalic acid. During the post-monsoon and winter periods, the photo-oxidation of biogenic and anthropogenic volatile organic compounds lead to the formation of oxalic acid through a chain reaction involving glyoxal, methylglyoxal, pyruvic and glyoxylic acids. In contrast, during the pre-monsoon, the oxidative degradation of the biogenic unsaturated fatty acids give rise to succinic acid, which can be decomposed to malonic acid and then to oxalic acid. The observed seasonal variations in acid concentrations are consistent with photochemical production and the subsequent accumulation under favourable meteorological conditions prevailing over the region.


Datum: 01.06.2016


Particulate morphology and elemental characteristics: variability at middle Indo-Gangetic Plain

Abstract

Airborne particulates were monitored at an urban location of middle Indo-Gangetic Plain (IGP) and subsequently analyzed for particulate diversity and mixing states. Exceptionally high particulate loadings were found both in case of coarser (PM10: 157.5 ± 102.9 μgm−3, n = 46) and finer particulates (PM2.5: 92.5 ± 49.8 μgm−3). Based on particulate morphology and elemental composition, five different clusters of particulates namely tarball, soot, sulphur-rich, aluminosilicate and mineral species were found to dominate. Soot particles (0.1–5 μm) were found to be partly coated, having voids filled by coating material without being completely engulfed. A specific type of amorphous, carbonaceous spherules was evident in wintertime fine particulates signifying emissions from biomass burning and wild fire. Traces of S, Na and Ca were found associated with carbonaceous agglomerates suggesting its metal scavenging behavior. Particle laden filters were further processed for metallic and water soluble ionic species to constitute aerosol composition. Coarser particulates were characterized with higher metallic species (9.2–17.8 %), mostly of crustal origin (Ca: 5.5 %; Fe: 1.6 %; Zn: 1.3 % and Na: 3.8 %) while PM2.5 also revealed their association with metallic components (6.0–14.9 %) having Ca (4.6 %), Fe (0.9 %) and K (0.8 %) as principle constituents. Ca, Na and NH4 + found to generate chloride and sulphate salts thus affecting particulate hygroscopicity. Elevated fractions of NO3 and K+ in PM2.5 signified contribution of biomass burning while presence of Cl with carbonaceous aerosols having traces of Si and K denoted contribution of farming and burning practices. Black carbon aerosol exhibited significant seasonal variability (6.9−21.9 μgm−3) which support larger association of carbonaceous aerosols in particle micrograph.


Datum: 01.06.2016


Toxic volatile organic air pollutants across Canada: multi-year concentration trends, regional air quality modelling and source apportionment

Abstract

A Unified Regional Air-quality Modelling System, AURAMS, was expanded to predict six toxic volatile organic compounds (VOCs) within a continental domain and two nested domains covering eastern and western Canada. The model predictions were evaluated against Environment Canada’s National Air Pollution Surveillance (NAPS) data set to assess the predictive capability of the model at daily and seasonal time scales. The predictions were also evaluated with satellite-derived column total maps for formaldehyde, carbon monoxide, and nitrogen dioxide. In general, the model showed fair to good predictive skill in terms of both correlation (R) and normalized mean bias (NMB) for benzene (R = 0.53 NMB = 26 %), formaldehyde (R = 0.73, NMB = −15 %) and acetaldehyde (R = 0.55, NMB = 29 %). For the other toxics VOCs, the model showed less predictive skill in the order 1,2,4-trimethylbenzene (R = 0.50, NMB = −41 %), 1,3-butadiene (R = 0.26, NMB = 40 %) and acrolein (R = 0.052, NMB = −51 %). The goal of this study was to apply an air quality model to assess the contribution of mobile sources to ambient levels of toxic VOCs at urban locations across Canada. The mobile source contribution varied in a complex manner for each species for different regions. For benzene and 1,2,4-trimethylbenzene, the mobile source contribution was in the range 40–65 % for major Canadian cities. The model predicted considerably lower mobile source contributions for rural locations in the Canadian Prairies, where other area sources dominate, such as the petrochemical industry. Measured concentration trends in toxics are also presented from 2004 to 2010. The primary emitted toxics declined gradually (13–16 % over 6 yr) whereas the toxic aldehydes showed no trend.


Datum: 01.06.2016


Depositional ice nucleation on NX illite and mixtures of NX illite with organic acids

Abstract

Mineral dust particles are known to be efficient ice nuclei in the atmosphere. Previous work has probed heterogeneous ice nucleation on various laboratory dust samples including Arizona Test Dust, kaolinite, montmorillonite, and illite as atmospheric dust surrogates. However, it has recently been suggested that NX illite may be a better representation of atmospheric dust. Hiranuma et al. (2015) performed a laboratory comparison for immersion ice nucleation on NX illite, but here we focus on depositional ice nucleation because of its importance in low temperature cirrus cloud formation. A Raman microscope setup was used to examine the ice-nucleating efficiency of NX illite. Organic coatings on the NX illite particles were also investigated using a mixture of 5 dicarboxylic acids (M5). The ratio of NX illite to M5 was varied from 1:10 to 100:1. It was found that NX illite efficiently nucleates ice with Sice = 1.07 ± 0.01 at −47 °C, with Sice slightly increasing at lower temperatures. In contrast, pure M5 is a poorer ice nucleus with Sice = 1.30 ± 0.02 at −40 °C, relatively independent of temperature. Further, it was found that M5 coatings on the order of several monolayers thick hindered the ice nucleating ability of NX illite. Optical images suggest that at colder temperatures (< −50 °C) 1:1 NX illite:M5 particles and pure M5 particles nucleate ice depositionally, while at warmer temperatures (> −50 °C) subsaturated immersion ice nucleation dominates. These experiments suggest that mineral dust particles may become less active towards ice nucleation as they age in the atmosphere.


Datum: 28.05.2016


Annual and decadal variation in chemical composition of rain water at all the ten GAW stations in India

Abstract

Spatial variation of long term annual precipitation volume weighted concentrations of major chemical constituents (SO4 −2, NO3 , Cl, NH4 +, Ca+2, Mg+2, Na+ and K+ ) at all the ten Global Atmospheric Watch (GAW) stations in India for the period from 1981 to 2012 is studied in this paper. Ionic abundance and balance is studied as well. The range of long term annual mean pH at ten stations was 5.25 ± 0.82 to 6.91 ± 0.76, lowest at Mohanbari and highest at Jodhpur. The long term annual mean pH for the period 1981–2012 showed decreasing trend at all the stations (significant at 5 % level). Decadal mean pH among ten stations for 1981–1990, 1991–2000 and 2001–2012 ranged between 7.31 to 5.76, 7.45 to 4.92 and 6.16 to 4.77 respectively and showed decreasing trend at all the stations during 1981–1990 to 2001–12. The percentage occurrence of acidic pH (<5.65) at ten stations ranged from 3 to 72 %, lowest at Jodhpur and highest at Mohanbari and it increased from 1981–1990 to 2001–2012 almost at all the stations. Temporal variation of annual mean values of nssSO4 −2, NO3 , Ca+2 and pH for the study period were attempted. Variation of nss K (non sea salt Potassium) at all the stations was studied to assess the biomass burning contribution in different regions. Non-marine (terrestrial) contribution dominated for majority of ionic constituents at most of the stations. However marine contribution was found to be dominant for Mg at Port Blair and Minicoy. Also sea salt fraction of SO4 was higher than terrestrial at Minicoy. Sources of measured ionic constituents in rain water are assessed through correlation analysis. The concentrations of all the ionic species were lowest at Kodaikanal, a high altitude hill top station and the total ionic mass was 136.0 μeq/l. Jodhpur, an arid station not only had highest concentrations of Ca+2, SO4 −2 and K+ but also had highest total ionic content (1051.8 μeq/l) among all the stations. At Srinagar, Jodhpur, Allahabad, Nagpur and Pune stations Ca+2 was the dominant cation while dominant anion was NO3 for Srinagar, Allahabad, and Nagpur and Cl for Jodhpur and Pune; at Mohanbari NO3 and Ca+2; at Visakhapatnam, Port Blair and Minicoy Na+ and Cl were abundant. Temporal variation had shown an increasing trend for nssSO4 −2 and NO3 and obviously decreasing trend for pH at all the stations. However, Ca+2 showed a decreasing trend at all the stations except at Port Blair. With the exception of Pune and Jodhpur stations, nssK showed a decreasing trend at all the stations revealing decreasing influence of soil/biomass burning over Indian GAW stations. Negative correlation of pH with SO4 −2 was found to be weak compared to NO3 .


Datum: 06.05.2016


Inorganic ions and trace metals bulk deposition at an Atlantic Coastal European region

Abstract

The inorganic chemical composition (major ions and trace metals) of bulk deposition samples collected monthly with bulk collectors at seven Atlantic Coastal European cities (Galicia, Northwest of Spain) during wet season (September 2011 to March 2012) has been assessed and compared. Trace metals (Al, As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) were analysed in soluble fraction and non-soluble fraction (after acid extraction) of the bulk deposition by inductively coupled plasma-mass spectrometry. Major inorganic ions (Cl, NO3 , SO4 2−, Na+, K+, Ca2+, Mg2+ and NH4 +) were analysed in the soluble fraction of the bulk deposition by capillary zone electrophoresis. Univariate analysis (ANOVA and Multiple Range Test) according to the location of each sampling site was performed. Results also suggest a great influence of cleaner Atlantic air masses. After partition coefficients and enrichment factor estimation, similar sources could be assigned for the ionic and metal composition of bulk deposition at seven urban sites.


Datum: 04.05.2016


Ionic and elemental composition of PM 2.5 aerosols over the Caribbean Sea in the Tropical Atlantic

Abstract

To characterize atmospheric particulate matter equal or less than 2.5 μm in diameter (PM2.5) over the Tropical Atlantic Ocean, aerosol sampling was carried out in Puerto Rico during August and September, 2006. Aerosols were analyzed by ion chromatography for water-soluble inorganic and organic ions (including Na+, NH4 +, Mg2+, Ca2+, K+, Cl, SO4 2−, NH4 +, F, methanesulfonate (MSA), and oxalate), by inductive coupled plasma mass spectrometry (ICPMS) for trace elements (Al, Fe, Zn, Mn, Cu, Ni, V, Pb, Cr, Sb, Co, Sc, Cd), and by scanning electron microscopy for individual aerosol particle composition and morphology. The results show that the dominant cations in aerosols were Na+, (mean: 631 ng m−3), accounting for 63.8 % of the total cation and NH4 + (mean: 164 ng m−3), accounting for 13.8 % of the total cation measured in this study. The main inorganic anions were Cl (576 ng m−3, 54.1 %) and SO4 2− (596 ng m−3, 38.0 %). The main organic anion was oxalate (18 ng m−3). Crustal enrichment factor calculations identified 62 % of the trace elements measured (Cu, Ni, V, Co, Al, Mn, Fe, Sc, and Cr) with crustal origin. Single particle analysis demonstrated that 40 % of the aerosol particles examined were Cl rich particles as sodium chloride from seawater and 34 % of the total particles were Si-rich particles, mainly in the form of aluminosilicates from dust material. Based on the combination of air-mass trajectories, cluster analysis and principal component analysis, the major sources of these PM2.5 particles include marine, Saharan dust and biomass burning from West Africa; however, volcanic emissions from the Soufriere Hills in Montserrat had significant impact on aerosol composition in this region at the time of sample collection.


Datum: 03.05.2016


Photochemical activation of chlorine by iron-oxide aerosol

Abstract

The photochemical activation of chlorine by dissolved iron in artificial sea-salt aerosol droplets and by highly dispersed iron oxide (Fe2O3) aerosol particles (mainly hematite, specific surface ~150 m2 g−1) exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic chlorine (Cl) from the irradiated aerosol. When the salt aerosol contained Fe2O3 at pH 6, no significant Cl production was observed, even if the dissolution of iron was forced by “weathering” (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol L−1, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8 × 1021 atoms cm−2 h−1, respectively. In a further series of experiments, the pure Fe2O3 aerosol was exposed to various levels of gaseous hydrogen chloride (HCl). The resulting Cl production rates ranged from 8 × 1020 Cl atoms cm−2 h−1 (at ~4 ppb HCl) to 5 × 1022 Cl atoms cm−2 h−1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2–5 %, depending on the relative humidity). The Fe2O3 experiments indicate that iron-induced Cl formation may be important for highly soluble combustion-aerosol particles in marine environments in the presence of gaseous HCl.


Datum: 14.04.2016


Seasonal variation of bromocarbons at Hateruma Island, Japan: implications for global sources

Abstract

High-frequency measurements of dibromomethane (CH2Br2) and bromoform (CHBr3) at Hateruma Island, in the subtropical East China Sea, were performed using automated preconcentration gas chromatography/mass spectrometry. Their baseline concentrations, found in air masses from the Pacific Ocean, were 0.65 and 0.26 ppt, respectively, in summer and 1.08 and 0.87 ppt, respectively, in winter. Air masses transported from Southeast Asia were rich in bromocarbons, suggesting strong emissions in this area. The passage of cold fronts from the Asian continent was associated with sharp increases in observed concentrations of bromocarbons derived from coastal regions of the continent. Comparison of the relationships between [CH2Br2]/[CHBr3] and [CHBr3] in the Hateruma Island data with those in monthly mean data from 14 globally distributed U.S. National Oceanic and Atmospheric Administration ground stations suggested that these gases are produced primarily from a common process on a global scale.


Datum: 13.04.2016


Ambient volatile organic compounds in the atmosphere of industrial central India

Abstract

Volatile organic compounds (VOCs) are an important group of compounds because of their role in atmospheric chemistry and the risk they pose to human health and ecosystem. Therefore, the interest in determining VOCs in the atmosphere has increased over the last few decades to understand their emission, distribution, and sources. Considering the expanding urbanization and increasing use of fuels, very limited data of VOCs in India is available. This paper describes the chemical analysis of 12 light VOCs in 144 ambient air samples collected from three different sites near Raipur, India during a period of April, 2006-March, 2007 in order to understand their temporal and spatial distributions. This data has provided some important insights into the VOC profile, for the first time, of an industrial area in India. The annual average concentrations of all 12 VOCs in our study ranged from 43.2 to 160.4 μg m−3 (mean: 95.6 ± 31.0). The annual average concentration of individual VOCs in Raipur region ranged from 3.4 μg m−3 for xylenes to 18.3 μg m−3 for n-butane. n-Butane, i-butane, and propane were the three most abundant pollutants among all of the VOCs measured. The observed concentrations of these compounds in Raipur region were comparable to other Asian cities with some exceptions. The levels of total VOCs showed seasonal variations with a statistically significant winter maximum and lower values during summer and monsoon ranging from 55.9 ± 9.9 μg/m3 in August to 144.5 ± 15.5 μg/m3 in January. Sources of these VOCs have been described using species ratios and correlation studies.


Datum: 05.04.2016


A method for the selective measurement of HO 2 and RO 2 radical concentrations using a Nafion-PERCA system

Abstract

An instrument is developed for the measurement of peroxy radical using chemical amplification coupled with NO2-luminol chemiluminescence detection. The chain length of 147 ± 10 (1σ) is determined by an HO2 source that uses the photolysis of water vapor under 184.9 nm in air. A Nafion system equipped with a Nafion tube of ~2.2 mm external diameter and 350 mm length is employed in the PERCA instrument (Nafion-PERCA system). When flowing an air sample containing HO2 through the Nafion system, it is found that - 94.6 % of HO2 is removed. In contrast, only 17.8 % of RO2 radicals (a mixtures of CH3O2 and CH3C(O)O2 with a ratio of 1.1:0.9) are removed. The results indicate the Nafion system has a good selective removing performance of HO2 radical during the PERCA measurement. Therefore, the method could be applied to ambient and laboratory measurements of absolute concentrations of RO2 as well as the sum of HO2 and RO2.


Datum: 01.04.2016


Analysis of chemical characteristics of PM 2.5 in Beijing over a 1-year period

Abstract

Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious problem in Beijing in recent years. To study the temporal and spatial variations in the chemical components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from 2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon (EC), K+, NH4 +, NO3 , SO4 2−, Cl, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for analysis. Overall, OC, SO4 2−, NO3 , and NH4 + were dominant among 15 components, the annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and 13.20 ± 12.80 μg·m−3, respectively. Compared with previous studies, the concentrations of NH4 + were significantly higher in this study. In winter, the average concentrations of OC and EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in spring, summer, autumn, and winter, respectively. The annual average [NO3 ]/[SO4 2−] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in Beijing, indicating that the contribution ratio of mobile source increased in recent years in Beijing. Analysis of correlations between temperature and relative humidity and between SOR ([SO4 2−]/([SO4 2−] + [SO2])) and NOR ([NO3 ]/([NO3 ] + [NO2])) indicated that gas-phase oxidation reactions were the major formation mechanism of SO4 2− in spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous reactions both occurred in autumn and winter. NO3 was mainly formed through year-round heterogeneous reactions in urban Beijing.


Datum: 01.04.2016


Competing impact of anthropogenic emissions and meteorology on the distribution of trace gases over Indian region

Abstract

The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.


Datum: 01.03.2016


Ozone and secondary organic aerosol formation from Ethylene-NO x -NaCl irradiations under different relative humidity conditions

Abstract

The formation of ozone and secondary organic aerosol (SOA) from ethylene-NO x -NaCl(aerosol) irradiations was studied under various relative humidity (RH) conditions in an indoor smog chamber. In the absence of NaCl seed aerosols, SOA was hardly formed and peak O3 concentrations decreased linearly with increasing RH in ethylene irradiations. For the irradiations with NaCl seed aerosols, when RH <48 % (efflorescence relative humidity of NaCl), NaCl existed as solid phase and had little effect on peak O3 concentrations. The infrared spectra from sampled particles showed that SOA was rarely formed on solid NaCl particles. However, when NaCl was in the aqueous phase as RH ≥ 48 %, the peak O3 concentration was sharply reduced by over 20 % as compared to experiments without NaCl aerosol, and the absorption of NaNO3 in aerosols was coincidently increased with RH. Model results indicated that the heterogeneous reaction of N2O5 with aqueous NaCl aerosols was the main cause for the sharp decrease of O3. Besides, the absorptions from C-H, C = O, ONO2 and COO groups all greatly increased with RH. Our results show that SOA from ethylene-NOx irradiations was mainly formed through aqueous reactions. The yields of SOA from ethylene were measured to be 1.5 and 2.3 % at RH of 65 and 84 %, respectively.


Datum: 01.03.2016


Biogenic volatile compound emissions from a temperate forest, China: model simulation

Abstract

Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m−2 h−1 for isoprene, and 0.48 and 0.47 mg m−2 h−1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.


Datum: 01.03.2016


Carbonaceous aerosols over Pune and Hyderabad (India) and influence of meteorological factors

Abstract

Sampling of particulate matter with aerodynamic diameter cut off at 2.5 μm (PM2.5) has been carried out over a semi urban site of Pune and an urban site of Hyderabad. Analysis of elemental Carbon (EC) and Organic Carbon (OC) present in PM2.5 was carried out using advanced Desert Research Institute’s (DRI) Thermal/Optical Carbon Analyzer operated on IMPROVE_ A (Interagency Monitoring of Protected Visual Environments_ A) protocol. It is found that average concentration of EC and OC both at Pune and Hyderabad was highest during winter season and lowest during monsoon season. Winter high is mainly controlled by inversion, whereas monsoon low is due to rain-out and wash-out process. OC/EC ratio showed higher variation over Pune compared to that over Hyderabad in different seasons, indicating divergent sources of emission of OC and EC at Pune. Formation of Secondary Organic Carbon (SOC) has also been identified as one of the reasons for wide variation in OC/EC ratio value in different seasons over both the sites.


Datum: 01.03.2016


Analysis of bulk precipitation chemistry in Serbia for the period from 1982 to 2010

Abstract

Bulk precipitation samples collected daily through bulk collectors at eight meteorological stations in Serbia were analyzed for their chemical composition. The data covers time series, from 20 to 28 years, in the period between 1982 and 2010. The most abundant ion in the samples was sulfate. Only 0.17 % of all samples were from strong acid rains (pH < 3.5). The relatively high average pH values (5.94–6.26) of the collected precipitation indicate the neutral or alkaline nature of local rainwater. Trends in both the annual amount and the composition of precipitation were tested by the nonparametric Mann–Kendall test and Sen’s slope estimator. Significant increasing trend of precipitation was identified for almost all stations. Rebuilding activities after the bombing of Serbia in 1999 were identified as a possible anthropogenic cause of the sharp increase of some ions (Ca2+) in the first year following the bombing. The origin of air masses arriving at one particular station was examined using two-dimensional backward trajectories. Western sectors (W, SW and NW) accounted for almost half (44.3 %) of all rainy days, while eastern sectors (SE, E and NE) brought only 10.4 % of all rainy days. The distribution, per sector, of volume-weighted concentrations of sulfate, nitrate, ammonium, calcium, potassium, magnesium, chloride and sodium ions, as well as the amount of precipitation and its pH values for one station, was also analyzed. Rainwater from the SE and S sectors was the most polluted.


Datum: 01.03.2016






Information about this site:

Last update: 03.02.2016

The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.

To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!

Topic: Current, research, scientific, atmospheric chemistry, journal, letters, list, recent, articles.






(C) 1996 - 2016 Internetchemistry













Current Chemistry Job Vacancies:

[more job vacancies]