Current Chemistry News

The latest research news.

Alkali Fulleride K3C60
Footballs With No Resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Image: Intense laser flashes remove the electrical resistance of the alkali fulleride K3C60.

This is observed at temperatures at least as high as minus 170 degrees Celsius.

[Credit, picture: J. M. Harms/MPI for the Structure and Dynamics of Matter]

Magnesium quantum logic spectroscopy
First direct observation of a quantum leap in a molecule

A deep look into a single molecule: The quantum state of a magnesium molecular ion has been measured live and in a non-destructive fashion for the first time.

Figure - Basic concept of the experiment: MgH+ (orange) and Mg+ (green) are trapped together in a linear ion trap. The two-ion compound is cooled to the motional ground state via the atomic ion.

An oscillating dipole force changes the motional state according to the rotational state of the molecular ion. This motional excitation can be detected on the atomic ion.

[Credt: PTB]

Arylboronates made easy
Arylboronates Made Easy

Abandoning expensive and toxic materials in chemical synthesis: This is the goal pursued by scientists at the University of Wurzburg. In the magazine Angewandte Chemie, they describe a new way to achieve this goal, a surprise included. [Image Credit: Todd Marder]

Colloid Neutron Scattering
A Model System for so-called Soft Colloids

A New Study shows Correlation between Microscopic Structures and Macroscopic Properties - and offers a Recipe Book for Colloids.

Image: Using neutron scattering, researchers were able to study the structure of their samples. The size of the rings in the image can, for example, define the distance between two colloid particles.

[Image credit: Forschungszentrum Julich]

A stable borole
Boroles get a stability boost

Boroles could be a highly interesting class of materials for practical use in photovoltaic or LED applications - if it weren't for the molecules' extreme instability. Chemists from Wurzburg have now discovered a powerful stabiliser.

Image: Fluoromesityl groups boost the stability of boroles. F stands for fluorine, B for boron and C for carbon.

[Credit, picture: Todd Marder]

Van der Waals Force Re-Measured
Van der Waals Forces Re-Measured

Julich physicists verify nonlinear increase with growing molecular size.

Image: Schematic experimental setup. When different types of molecules are removed from the metal surface, the van der Waals forces can be determined by frequency changes at the tip of the atomic force microscope. Their findings have been published in Nature Communications and could help to improve fundamental simulation methods for chemistry, physics, biology, and materials science.

[Image Credit, Copyright: Forschungszentrum Julich]

Molecular Banister
Chemists Build a Molecular Banister

Chemists at the University of Basel in Switzerland have succeeded in twisting a molecule by combining molecular strands of differing lengths.

Image: Based on the strands of different lengths (blue and gray), the new helical molecule (right) adopts a spatial arrangement (schematic diagram in the center) that resembles the banister of a spiral staircase [Credit, Illustration: University of Basel, Department of Chemistry].

Buckyball Molecules Grow
Buckyballs: Live Images from the Nano-cosmos

Researchers watch layers of football molecules grow.



This is an artist's impression of the multilayer growth of buckyballs.

[Credit: Nicola Kleppmann/Technical University Berlin, Germany]

Normalized activity
Decay rates of radioactive substances are constant

Precise activity measurements on Cl-36 samples refute a dependence of the decay rate on the distance between the Earth and the Sun.

Image: The normalized activity as a function of time shows no dependence on the season in PTB's data, contrary to the data obtained at the Ohio State University Research Reactor (OSURR) [Image credit: PTB].

Strongest material
Carbon's New Champion

Rice University theorists calculate atom-thick carbyne chains may be strongest material ever.



Rice University researchers have determined from first-principle calculations that carbyne would be the strongest material yet discovered.

The carbon-atom chains would be difficult to make but would be twice as strong as two-dimensional graphene sheets.

[Credit: Vasilii Artyukhov, Rice University].

Biomass catalytic tandem reaction
A Tandem for Biomass

Catalytic tandem reaction for the conversion of lignin and bio-oil by hydroxylation of phenols to form arenes.

Image: The conversion of lignin into low-boiling-point arenes instead of high-boiling-point phenols could greatly facilitate conventional refinery processes. A new procedure for the depolymerization of lignin and simultaneous conversion phenols into arenes is described.

[Source: Angewandte Chemie]

Information about this site:

Last update: 09 February 2016

To include your website to the Internetchemistry directory, please use our registration form or send us an eMail.

(C) 1996 - 2016 Internetchemistry

The Chemical Elements:

H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Ga Ge As Se Br Kr
Rb Sr In Sn Sb Te I Xe
Cs Ba Tl Pb Bi Po At Rn
Fr Ra Uut Fl Uup Lv Uus Uuo

Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
  Hf Ta W Re Os Ir Pt Au Hg
  Rf Db Sg Bh Hs Mt Ds Rg Cn

La Ce Pr Nd Pm Sm Eu Gd
  Tb Dy Ho Er Tm Yb Lu

Ac Th Pa U Np Pu Am Cm
  Bk Cf Es Fm Md No Lr