Hide Menu
Hide Menu   Home   |     About Us   |   Contact   |   Imprint   |   Privacy   |   Sitemap
Hide Menu   Chemistry Index   |   Chemicals   |   Chemical Elements
Hide Menu   Lab Instruments   |  
Hide Menu   Job Vacancies   |  
Hide Menu   Chemistry Forum   |  
Chemistry A - Z
Equipment for Lab and Industry
Chemicals and Compounds
Job Vacancies
Imprint, Contact

 

Ecotoxicology

Current research reports and chronological list of recent articles..




Ecotoxicology is an international scientific journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. Magazines with similar content (environmental chemistry):

 - Atmospheric Chemistry.

 - Chemosphere.

 - Environmental Chemistry.

 - Environmental Chemistry Letters.

 - Environmental Monitoring.

 - Environmental Science and Technology.

 - Environmental Toxicology.



Ecotoxicology - Abstracts



Hormesis under oil-induced stress in Leersia hexandra Sw. used as phytoremediator in clay soils of the Mexican humid tropic

Abstract

The oil industry has inherent risks of spills or leaks due to natural or anthropogenic causes, which cause alterations in the soil and damage to the plant. An experiment was carried to investigate the effect of oil on the growth, biomass production, biosynthesis of crude protein of Leersia hexandra grass and the remove of oil from the soil. The results showed different responses by L. hexandra depending on the age, low concentrations of oil induced a significant increase in stolon length, in relative growth rate, in dry matter production and in the biosynthesis of crude protein. The same parameters decreased at high concentrations of oil. However, at the end of the evaluation period of 180 days, high concentrations of oil induced a significant increase in the number of young plants and secondary roots, the terminal third of the main root and root dry matter. The dose response curves had the shape of an inverted U, showing that at days 15, 45, 90 and 180, in stolon length, aerial dry matter production, crude protein (day 90) and young plants (days 45 and 90) exhibited a typical biphasic response. The increase in oil concentration correlated with increases in young plants, number of secondary roots, number of roots at the middle, terminal third and root dry matter. After 180 days exposure the rhizosphere of L. hexandra a total oil removal of oil of 76.7 ± 4 was achieved; 61.7, 51, 44.6, 38 and 52% in soils that initially contained 7.9, 54, 102, 126, 145 and 238 g oil.


Datum: 18.09.2019


A preliminary assessment of mercury in the feathers of migratory songbirds breeding in the North American subarctic

Abstract

Passerines appear to have a greater sensitivity to mercury than other avian orders, and little data exists for mercury exposure in songbirds breeding at high latitudes. In this preliminary study, we examined mercury exposure in 12 migratory songbird species breeding in Denali National Park & Preserve, in subarctic interior Alaska. Overall, we analyzed 343 feather samples collected in 2015–2017 for their total mercury content. Mercury levels found in feathers indicates exposure during the period of feather growth, which we assume largely took place on the breeding ground. In this limited sample of songbird feathers, mercury concentrations ranged from near zero to 6.34 μg/g. Most species sampled showed relatively low mercury, but some individuals had high enough concentrations to be subject to adverse physiological and behavioral effects. There was an indication that mercury concentrations of breeding songbirds may vary by diet composition, with non-invertivorous species possibly tending towards lower mercury concentrations. Overall, however, the degree of mercury exposure observed was low for songbirds breeding in the subarctic. Further examination would prove useful in clarifying mercury exposure and ecological relationships in this under-studied region.


Datum: 17.09.2019


Patterns of blood mercury variation in two long-distance migratory thrushes on Mount Mansfield, Vermont

Abstract

We investigated mercury (Hg) blood concentrations in Bicknell’s thrush (Catharus bicknelli) and Swainson’s thrush (C. ustulatus), congeneric long-distance migratory songbirds, from 2000−2017 at a montane forest site in north-central Vermont. We analyzed variation in blood Hg of both species using mixed-effects models, incorporating atmospheric wet Hg deposition data from a nearby sampling location. Although Hg deposition varied among years and seasonally, we detected no temporal trend in either atmospheric deposition or blood Hg, nor evidence of a relationship between the two. Sampling date had the strongest effect on blood Hg concentration, which declined seasonally, followed by age and sex of the individual. The data did not support an effect of species. We believe that the absence of a clear relationship between local atmospheric deposition and thrush blood Hg concentrations suggests that Hg cycling dynamics, mechanisms of transfer, and timing of uptake by montane forest biota are complex and poorly understood. The blood Hg concentrations of ~0.07–0.1 μg/g we documented in Bicknell’s and Swainson’s thrush are below those found to negatively impact physiological or reproductive endpoints in other invertivorous terrestrial passerines. To better evaluate the validity of Bicknell’s thrush as a bioindicator of MeHg availability in montane forest ecosystems, we recommend (1) effects-based investigations, (2) a more robust understanding of Hg and MeHg cycling, (3) more clear geospatial and temporal links between Hg deposition and biotic uptake, and (4) more thorough documentation of Hg burdens across the species’ annual cycle.


Datum: 13.09.2019


Acute exposure to urban air pollution impairs olfactory learning and memory in honeybees

Abstract

While the ecological effects of pesticides have been well studied in honeybees, it is unclear to what extent other anthropogenic contaminants such as air pollution may also negatively affect bee cognition and behaviour. To answer this question, we assessed the impacts of acute exposure to four ecologically relevant concentrations of a common urban air pollutant—diesel generated air pollution on honeybee odour learning and memory using a conditioned proboscis extension response assay. The proportion of bees that successfully learnt odours following direct air pollution exposure was significantly lower in bees exposed to low, medium and high air pollutant concentrations, than in bees exposed to current ambient levels. Furthermore, short- and long-term odour memory was significantly impaired in bees exposed to low medium and high air pollutant concentrations than in bees exposed to current ambient levels. These results demonstrate a clear and direct cognitive cost of air pollution. Given learning and memory play significant roles in foraging, we suggest air pollution will have increasing negative impacts on the ecosystem services bees provide and may add to the current threats such as pesticides, mites and disease affecting colony fitness.


Datum: 11.09.2019


Correction to: Spatial variation in aquatic invertebrate and riparian songbird mercury exposure across a river-reservoir system with a legacy of mercury contamination

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Datum: 09.09.2019


Cadmium toxicity and its relationship with disturbances in the cytoskeleton, cell cycle and chromosome stability

Abstract

This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.


Datum: 09.09.2019


Modulation of brain serotonin by benzyl butyl phthalate in Fundulus heteroclitus (mummichog)

Abstract

Endocrine-disrupting chemicals have been known to alter important animal behaviors by modulating serotonin (5-hydroxytryptamine, 5-HT) and dopamine. F. heteroclitus (mummichog) brain serotonin and dopamine levels were quantified by enzyme-linked immunosorbent assay (ELISA) following a 28-day exposure regimen involving daily doses of either 0.1 mg l−1 benzyl butyl phthalate (BBP) dissolved in acetone or acetone alone (0.1 mg l−1). No differences in mean brain mass or total protein homogenate were induced by exposure to the acetone vehicle or BBP in acetone. The acetone vehicle had no effect on dopamine, serotonin, or tyrosine hydroxylase levels, but acetone did decrease tryptophan hydroxylase levels (p = 0.011). Exposure to BBP in acetone decreased dopamine (p = 0.024), increased serotonin (p < 0.001), reduced tryptophan hydroxylase as compared to the acetone vehicle alone (p < 0.001), and had no significant effect on tyrosine hydroxylase levels. This study is the first to report modulation of F. heteroclitus brain serotonin and its enzyme tryptophan hydroxylase following sub-lethal exposure to BBP in an acetone vehicle. In addition, modulation of brain dopamine in F. heteroclitus, sans simultaneous modulation of tyrosine hydroxylase, was also observed. These findings support the use of F. heteroclitus for assessing sub-lethal BBP exposure.


Datum: 05.09.2019


Acute toxicity of copper to the larval stage of three species of ambystomatid salamanders

Abstract

Copper (Cu) appears to be consistently more toxic to anuran species relative to other vertebrate taxa. There are limited Cu toxicity data for salamanders; of the few studies conducted on salamanders, most examined Cu effects on the embryonic, but not the larval, stage. We performed acute toxicity experiments, to quantify LC50s, on Harrison stage 46 larvae (free swimming hatchlings with egg yolk completely absorbed) of three ambystomatid salamander species. Each LC50 experiment used exposure concentrations of 10, 20, 30, 40, 50, and 60 µg/L with 10 replicates per concentration each containing one larva. We found very high toxicity for all species compared to previously published research on the embryo stage. Specifically, the 4-d LC50s for Ambystoma tigrinum and A. opacum were 35.3 and 18.73 µg/L, respectively. The same Cu concentrations caused similar toxicity to A. talpoideum (LC50 = 47.88 µg/L), but exposures required up to 48 d to elicit the same level of mortality. A time-to-event analysis indicated that time to mortality was significantly affected by Cu concentration. Additionally, for A. talpoideum, we observed that elevated levels of Cu decreased growth rate. Comparisons with previously reported Cu toxicity for embryos suggest that, as with fish, Cu may be more toxic to larval salamander stages than for embryos. Further, our data suggest that Cu is an important environmental contaminant that deserves increased scrutiny on the potential for population-level effects where contamination has occurred in wetlands and streams inhabited by salamanders.


Datum: 05.09.2019


Behavioral and immunotoxic effects of Prograf® (tacrolimus) in the male Siamese fighting fish

Abstract

Siamese fighting fish (Betta splendens) has been extensively exploited in the behavioral and physiological toxicology studies of drugs. Tacrolimus is an immunosuppressant drug largely used in liver and renal transplantations. Here we found that a 7-day exposure of male B. splendens to concentrations of 0.05 and 0.1 µg/mL Prograf® (tacrolimus) caused alterations in aggression and immunity indexes. Tacrolimus exposed fish presented lower opercular display in a mirror test which is indicative of reduced aggression. In addition, serum levels of lysozyme, IgM, alternative complement, and bactericidal activity of subjects exposed to 0.1 µg/mL tacrolimus were lower than those from the control treatment. These results showed the behavioral impairment and immunotoxic impacts of tacrolimus in a model of aquatic toxicology. The results suggest fishes provide a possible model for better understanding of the drug action in vertebrates, and possible consequences for the environment via its effects on non-target organisms in an ecotoxicology context.


Datum: 05.09.2019


Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae

Abstract

Detoxifying enzyme mRNAs are potentially useful stress biomarkers. Glutathione S-transferase (GST) metabolises lipophilic organic contaminants and mitigates oxidative damage caused by environmental pollutants. Herein, 12 Chironomus kiiensis GSTs (CkGSTs1−6, CkGSTt1−2, CkGSTd1−2, CkGSTm1−2) were cloned and grouped into sigma, theta, delta and microsomal subclasses. Open reading frames (450−699 bp) encode 170−232 amino acid proteins with predicted molecular masses of 17.31−26.84 kDa and isoelectric points from 4.94 to 9.58. All 12 GSTs were expressed during all tested developmental stages, and 11 displayed higher expression in fourth-instar larvae than eggs. GST activity after 24 h of phenol exposure was used to estimate environmental phenol contamination. After exposure to sublethal concentrations of phenol for 48 h, expression and activity of CkGSTs were inhibited in C. kiiensis larvae. Expression of CkGSTd1−2 and CkGSTs1−2 varied with phenol concentration, indicating potential use as biomarkers for monitoring environmental phenol contamination.


Datum: 01.09.2019


Magnitude of the mixture hormetic response of soil alkaline phosphatase can be predicted based on single conditions of Cd and Pb

Abstract

In soil ecosystems, it is very challenging to predict mixture hormesis effects. In the present study, soil alkaline phosphatase (ALP) was selected to investigate and predict its potential hormetic responses under Cd and Pb stresses. Typical reverse U-shaped dose–response relationships between ALP activities and the single and combined Cd and Pb were observed, showing a hormetic response of soil itself. The maximum stimulatory magnitudes ranged in 8.0 – 8.6% under 0.004 – 0.2 mg/kg Cd and 80 – 400 mg/kg Pb, respectively. An enhanced stimulation of 15.7% occurred under the binary mixtures of 0.6 mg/kg Cd and 200 mg/kg Pb. In addition, a dosage-independent binary linear regression model was proposed based on an assumption of a linear relationship between the single and combined hormetic responses under Cd and Pb. Our model can well predict ALP’s responses in the presence of the two metals’ mixtures (p < 0.1). Our findings provided new understandings to hormesis in soil.


Datum: 01.09.2019


Desmodesmus subspicatus co-cultured with microcystin producing (PCC 7806) and the non-producing (PCC 7005) strains of Microcystis aeruginosa

Abstract

Although microcystins (MCs) are the most commonly studied cyanotoxins, their significance to the producing organisms remains unclear. MCs are known as endotoxins, but they can be found in the surrounding environment due to cell lysis, designated as extracellular MCs. In the present study, the interactions between MC producing and the non-producing strains of Microcystis aeruginosa, PCC 7806 and PCC 7005, respectively, and a green alga, Desmodesmus subspicatus, were studied to better understand the probable ecological importance of MCs at the collapse phase of cyanobacterial blooms. We applied a dialysis co-cultivation system where M. aeruginosa was grown inside dialysis tubing for one month. Then, D. subspicatus was added to the culture system on the outside of the membrane. Consequently, the growth of D. subspicatus and MC contents were measured over a 14-day co-exposure period. The results showed that Microcystis negatively affected the green alga as the growth of D. subspicatus was significantly inhibited in co-cultivation with both the MC-producing and -deficient strains. However, the inhibitory effect of the MC-producing strain was greater and observed earlier compared to the MC-deficient strain. Thus, MCs might be considered as an assistant factor that, in combination with other secondary metabolites of Microcystis, reinforce the ability to outcompete co-existing species.


Datum: 01.09.2019


Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods

Abstract

Zinc oxide nanoparticles (ZnO NPs) are now commonly used in many consumer products (detergents, antibacterial products, protective creams). The aim of the study is to determine the ecotoxicological effects of ZnO NPs on the survival and in the total hemocyte counts of Galleria mellonella L. 1758 (Lepidoptera: Pyralidae) with two different methods (automated cell counter and hemocytometer). A toxicity test was performed to determine the lethal concentrations of ZnO NPs on larvae by force feeding method. After 24 h the treatment, LC50 was 6.03 μg/10 µl and LC99 was 12.86 μg/10 µl for force fed larvae according to probit assay. The NP that induced changes in the total hemocytes counts were counted by optical microscopy (larvae exposed to four different doses of ZnO NPs) and by automated cell counter. Analyses of total hemocyte counts of the insect were performed with four doses (0.5, 1, 2.5, 5 μg/10 µl) <LC50 at 24 h upon feeding larvae revealed that a number of hemocytes did not show significant changes in all treatments compared with control in the optical microscopy counting. The similar statistically insignificant counting results were also seen in the automated cell counting results. The percentage of the dead cells (10.01%) in the 5 μg/10 µl group was significantly higher than the control group (3.03%) and showed a statistically significant difference at 24 h in the optical microscopy count with trypan blue viability test.


Datum: 01.09.2019


Combined effects of waterborne copper exposure and salinity on enzymes related to osmoregulation and ammonia excretion by blue crab Callinectes sapidus

Abstract

Copper is essential, but can be toxic to aquatic organisms when present in high concentrations. In freshwater crustaceans, copper inhibits enzymes related to ionic and osmoregulation and to the ammonia efflux, that leads to Na+ imbalance and inhibition of ammonia excretion. In the animals inhabiting estuarine or seawater, mechanisms of copper toxicity is not clear, but had been described as disruption of ionregulation and metabolism. To clarify the mechanism of copper toxicity in crustaceans inhabiting variable salinity, this work investigated whether copper affects ammonia excretion and enzymes used for ammonia balance and osmoregulation in the blue crab Callintectes sapidus acclimated to salinity 2 and 30 ppt. To achieve this, juveniles of the blue crab were exposed to 63.5 µg/L of copper at both salinities for 96 h. This is an environmentally realistic copper concentration. Results of ammonia efflux, free amino acids and Na+ concentrations in hemolymph, Na+/K+-ATPase, H+-ATPase and, carbonic anhydrase (CA) activities in gills were consistent with the osmoregulatory pattern adopted by the blue crab, which hyperosmoregulates at salinity 2 ppt and osmoconforms at 30 ppt. At 30 ppt copper reduced free amino acid in hemolymph of crabs, suggesting an effect of the metal on osmotic performance. At 2 ppt, copper significantly increased the H+-ATPase activity involved in ammonia excretion. This may be a compensatory response of crabs to maintain low levels of ammonia in their hemolymph; which can be increased by copper exposure. Results presented here are useful for the improvement of the Biotic Ligand Model (BLM) to predict copper toxicity for saltwater environments.


Datum: 01.09.2019


A major release of urban untreated wastewaters in the St. Lawrence River (Quebec, Canada) altered growth, reproduction, and redox status in experimentally exposed Daphnia magna

Abstract

In 2015, five billion liters of untreated urban wastewater (UWW) were released into the St. Lawrence River (Quebec, Canada) over the course of four days in order to repair the Montreal’s sewer interceptor network related to the city’s primary wastewater treatment plant. The UWW discharge originated mainly from household, industrial, and hospital sources. The objective of this study was to investigate the toxicological effects of this unprecedented punctual UWW release on aquatic invertebrates to gather information that could help understand the potential impacts to the receiving environment of overflow episodes occurring during heavy rain events. Water samples were collected at four impacted and non-impacted sites during and four weeks after the release. The freshwater crustacean Daphnia magna were experimentally exposed to surface water collected from UWW-impacted sites for 13 days and analyzed for life-history endpoints and suitable biomarkers related to oxidative stress (i.e., catalase, superoxide dismutase, lipid peroxidation, and glutathione-s-transferase) and reproduction (chitinase). Results indicated that D. magna growth and reproduction were significantly increased by exposure to UWWs. These effects were correlated with an increase in chitinase activity, which is primarily controlled by reproductive hormones and involved in growth, suggesting potential impacts on these processes. Results also indicated that some UWW samples might have caused oxidative stress during the release but that it was overcome by antioxidant defenses and did not lead to cellular damage. Overall, current results contribute to a better understanding of the biological impacts of UWW to aquatic invertebrates for a better stormwater management.


Datum: 01.09.2019


Distribution of contaminants in the environment and wildlife habitat use: a case study with lead and waterfowl on the Upper Texas Coast

Abstract

The magnitude and distribution of lead contamination remain unknown in wetland systems. Anthropogenic deposition of lead may be contributing to negative population-level effects in waterfowl and other organisms that depend on dynamic wetland habitats, particularly if they are unable to detect and differentiate levels of environmental contamination by lead. Detection of lead and behavioral response to elevated lead levels by waterfowl is poorly understood, but necessary to characterize the risk of lead-contaminated habitats. We measured the relationship between lead contamination of wetland soils and habitat use by mottled ducks (Anas fulvigula) on the Upper Texas Coast, USA. Mottled ducks have historically experienced disproportionate negative effects from lead exposure, and exhibit a unique nonmigratory life history that increases risk of exposure when inhabiting contaminated areas. We used spatial interpolation to estimate lead in wetland soils of the Texas Chenier Plain National Wildlife Refuge Complex. Soil lead levels varied across the refuge complex (0.01–1085.51 ppm), but greater lead concentrations frequently corresponded to areas with high densities of transmittered mottled ducks. We used soil lead concentration data and MaxENT species distribution models to quantify relationships among various habitat factors and locations of mottled ducks. Use of habitats with greater lead concentration increased during years of a major disturbance. Because mottled ducks use habitats with high concentrations of lead during periods of stress, have greater risk of exposure following major disturbance to the coastal marsh system, and no innate mechanism for avoiding the threat of lead exposure, we suggest the potential presence of an ecological trap of quality habitat that warrants further quantification at a population scale for mottled ducks.


Datum: 01.09.2019


Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae)

Abstract

Wild and managed bees are essential for crop pollination and food production. However, the widespread use of insecticides such as neonicotinoids may affect the survival, development, behavior, and maintenance of bee colonies. Therefore, in this study we evaluated the impacts of three neonicotinoid insecticides on the survival and walking abilities of the Africanized honeybee A. mellifera and stingless bee S. postica. A. mellifera was more susceptible than S. postica to all neonicotinoids tested. The median lethal concentrations LC50 values estimated for acetamiprid, imidacloprid, and thiacloprid were 189.62, 22.78, and 142.31 ng µL–1 of diet for A. mellifera, and 475.94, 89.11, and 218.21 ng µL–1 of diet for S. postica, respectively. All tested neonicotinoids affected the speed, distance traveled, duration and frequency of resting, and continuous mobility of both bee species. The results showed that in spite of the different susceptibility to compounds with cyano and nitro radicals, the behavioral variables showed different levels of commitment according to the molecule insecticide and bee species. These results contribute not only to the understanding of the effects of neonicotinoid insecticides on A. mellifera and S. postica, but also to help in the development of protocols that aim to reduce the impact of these insecticides in Neotropical environments.


Datum: 01.09.2019


Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus)

Abstract

The wheat aphid Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) is a devastating pest of wheat crops worldwide. Dinotefuran, a novel neonicotinoid insecticide, has been used to prevent piercing-sucking agricultural insects, such as R. padi. This research showed that the dinotefuran not only caused direct mortality but also affected the physiology of R. padi via sublethal effects. In this study, residual film bioassay results indicated that there were no significant differences in the toxicity of dinotefuran between field in 2017 and laboratory strains. However, the longevity, fecundity and female preoviposition of the F0 generation were significantly decreased by exposure to different sublethal doses (L10, L20 and L30) of dinotefuran. In contrast, the fecundity and female preoviposition of the F1 generation were significantly increased by the sublethal treatment L20, although this dose reduced net reproductive rate, intrinsic rate of increase and finite rate of increase. These findings are the first laboratory evidence of hormesis attributable to low dinotefuran doses. Developmental duration of nymphs was significantly increased by the sublethal doses L20 and L30 but not L10. Sublethal exposure to dinotefuran can increase the transgenerational population growth of R. padi and affected demographic parameters of the target insect. This study provides useful data for developing management strategies for R. padi involving the use of dinotefuran.


Datum: 01.09.2019


Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour

Abstract

Behavioural assays are used as a tool to understand ecotoxicological effects on organisms, but are often not applied in an ecologically relevant context. Assessment of the effect of chemical contaminants on behaviours relating to fitness and trophic interactions for example, requires incorporating predator-prey interactions to create impact assessments. Dichlorodiphenyltrichloroethane (DDT) is a controlled substance but is still regularly used as a form of mosquito control. There is little explicit information on the effect of DDT on animal behaviour and the consequent effects upon trophic interactions. This study uses a 3 × 2 factorial design to assess the feeding behaviour of Xenopus laevis toward Culex sp. larvae when supplied with different prey cues. We also assess the behavioural responses of mosquito larvae when supplied with no threat cue and predator threat cues when exposed to 0 µg/L, 2 µg/L and 20 µg/L DDT. There was a significant “DDT exposure” x “prey cue” interaction whereby DDT significantly decreased the foraging behaviour of X. laevis towards live prey cues, however there was no effect of DDT on X. laevis response to olfactory prey cues. Dichlorodiphenyltrichloroethane exposure caused mosquito larvae to appear hyperactive regardless of DDT concentration. Mosquito larvae anti-predator response was significantly dampened when exposed to 2 µg/L DDT, however when exposed to 20 µg/L the anti-predator responses were not impaired. Our results indicate a complex interplay in trophic interactions under DDT exposure, wherein effects are mediated depending on species and concentration. There are possible implications regarding reduced anti-predator behaviour in the prey species but also reduced foraging capacity in the predator, which could drive changes in ecosystem energy pathways. We demonstrate that in order to quantify effects of pesticides upon trophic interactions it is necessary to consider ecologically relevant behaviours of both predator and prey species.


Datum: 01.09.2019


Realistic low-doses of two emerging contaminants change size distribution of an annual flowering plant population

Abstract

HHCB [1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran] and 4-tert-octylphenol [4-(1,1,3,3-tetramethylbutyl)phenol] are widely used emerging contaminants that have the potential to cause adverse effects in the environment. The purpose of this study was to observe if and how environmentally realistic concentrations of these contaminants alter growth in plant populations. It was hypothesized that within an exposed Gypsophila elegans Bieb (annual baby’s breath) population especially fast-growing seedlings are impaired even when the population mean is unaffected, and small doses can cause hormesis and, thus, an increase in shoot or root length. In a dose-response experiment, an experimental population of G. elegans was established (total 15.600 seeds, 50 seeds per replicate, 24 replicates per concentration, 5.2 seedlings/cm2) and exposed to 12 doses of HHCB or 4-tert-octylphenol. After five days, shoot and root length values were measured and population averages, as well as slow- and fast-growing subpopulations, were compared with unexposed controls. Growth responses were predominantly monophasic. HHCB seemed to selectively inhibit both root and shoot elongation among slow- and fast-growing individuals, while 4-tert-octylphenol selectively inhibited both root and shoot elongation of mainly fast-growing seedlings. The ED50 values (dose causing 50% inhibition) revealed that the slow-growing seedlings were more sensitive and fast-growing seedlings less sensitive than the average of all individuals. Although there was toxicant specific variation between the effects, selective toxicity was consistently found among both slow- and fast-growing plants starting already at concentrations of 0.0067 µM, that are usually considered to be harmless. This study indicates that these contaminants can change size distribution of a plant population at low concentrations in the nM/µM range.


Datum: 01.09.2019


 


Category: Current Chemistry Research

Last update: 28.03.2018.






© 1996 - 2019 Internetchemistry














I agree!

This site uses cookies. By using this website, you agree to the use of cookies! Learn more ...