Hide Menu
Hide Menu   Home   |     About Us   |   Contact   |   Imprint   |   Privacy   |   Sitemap
Hide Menu   Chemistry Index   |   Chemicals   |   Elemente
Hide Menu   Lab Instruments   |  
Hide Menu   Job Vacancies   |  
Hide Menu   Chemistry Forum   |  
Chemistry A - Z
Equipment for Lab and Industry
Chemicals and Compounds
Job Vacancies
Imprint, Contact

 

Biogeochemistry

Current research reports and chronological list of recent articles..




The international scientific journal Biogeochemistry publishes original papers and occasional reviews dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. General information about this topic see biogeochemistry.



Biogeochemistry - Abstracts



A net ecosystem carbon budget for snow dominated forested headwater catchments: linking water and carbon fluxes to critical zone carbon storage

Abstract

Climate-driven changes in carbon (C) cycling of forested ecosystems have the potential to alter long-term C sequestration and the global C balance. Prior studies have shown that C uptake and partitioning in response to hydrologic variation are system specific, suggesting that a comprehensive assessment is required for distinct ecosystems. Many sub-humid montane forest ecosystems in the US are projected to experience increased water limitation over the next decades and existing water-limited forests can be used as a model for how changes in the hydrologic cycle will impact such ecosystems more broadly. Toward that goal we monitored precipitation, net ecosystem exchange and lateral soil and stream C fluxes in three semi-arid to sub-humid montane forest catchments for several years (WY 2009–2013) to investigate how the amount and timing of water delivery affect C stores and fluxes. The key control on aqueous and gaseous C fluxes was the distribution of water between winter and summer precipitation, affecting ecosystem C uptake versus heterotrophic respiration. We furthermore assessed C stores in soil and above- and below-ground biomass to assess how spatial patterns in water availability influence C stores. Topographically-driven patterns in catchment wetness correlated with modeled soil C stores, reflecting both long-term trends in local C uptake as well as lateral redistribution of C leached from upslope organic soil horizons to convergent landscape positions. The results suggest that changes in the seasonality of precipitation from winter snow to summer rain will influence both the amount and the spatial distribution of soil C stores.


Datum: 21.04.2018


Geothermally warmed soils reveal persistent increases in the respiratory costs of soil microbes contributing to substantial C losses

Abstract

Increasing temperatures can accelerate soil organic matter decomposition and release large amounts of CO2 to the atmosphere, potentially inducing positive warming feedbacks. Alterations to the temperature sensitivity and physiological functioning of soil microorganisms may play a key role in these carbon (C) losses. Geothermally active areas in Iceland provide stable and continuous soil temperature gradients to test this hypothesis, encompassing the full range of warming scenarios projected by the Intergovernmental Panel on Climate Change for the northern region. We took soils from these geothermal sites 7 years after the onset of warming and incubated them at varying temperatures and substrate availability conditions to detect persistent alterations of microbial physiology to long-term warming. Seven years of continuous warming ranging from 1.8 to 15.9 °C triggered a 8.6–58.0% decrease on the C concentrations in the topsoil (0–10 cm) of these sub-arctic silt-loam Andosols. The sensitivity of microbial respiration to temperature (Q10) was not altered. However, soil microbes showed a persistent increase in their microbial metabolic quotients (microbial respiration per unit of microbial biomass) and a subsequent diminished C retention in biomass. After an initial depletion of labile soil C upon soil warming, increasing energy costs of metabolic maintenance and resource acquisition led to a weaker capacity of C stabilization in the microbial biomass of warmer soils. This mechanism contributes to our understanding of the acclimated response of soil respiration to in situ soil warming at the ecosystem level, despite a lack of acclimation at the physiological level. Persistent increases in the respiratory costs of soil microbes in response to warming constitute a fundamental process that should be incorporated into climate change-C cycling models.


Datum: 17.04.2018


Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest

Abstract

Elevated anthropogenic nitrogen (N) deposition is suggested to affect ecosystem phosphorus (P) cycling through altered biotic P demand and soil acidification. To date, however, there has been little information on how long-term N deposition regulates P fluxes in tropical forests, where P is often depleted. To address this question, we conducted a long-term N addition experiment in a mature tropical forest in southern China, using the following N treatments: 0, 50, 100, and 150 kg N ha−1 year−1. We hypothesized that (i) tropical forest ecosystems have conservative P cycling with low P output, and (ii) long-term N addition decreases total dissolved phosphorus (TDP) leaching losses due to reduced litter decomposition rates and stimulated P sorption deriving from accelerated soil acidification. As hypothesized, we demonstrated a closed P cycling with low leaching outputs in our forest. Under experimental N addition, TDP flux in throughfall was significantly reduced, suggesting that N addition may result in a less internal P recycling. Contrary to our hypothesis, N addition did not decrease TDP leaching, despite reduced litter decomposition and accelerated soil acidification. We find that N addition might have negative impacts on biological P uptake without affecting TDP leaching, and that the amount of TDP leaching from soil could be lower than a minimum concentration for TDP retention. Overall, we conclude that long-term N deposition does not necessarily decrease P effluxes from tropical forest ecosystems with conservative P cycling.


Datum: 01.04.2018


The C-biogeochemistry of a Midwestern USA agricultural impoundment in context: Lake Decatur in the intensively managed landscape critical zone observatory

Abstract

The damming of rivers has created hotspots for organic carbon sequestration and methane production on a global scale as the reservoirs intercept fluvial suspended and dissolved loads. To better understand how the C-biogeochemistry of a reservoir responds to watershed processes and evolves over time, Lake Decatur, located in the Intensively Managed Landscape Critical Zone Observatory (IML-CZO) was studied. Solid phase analyses (% organic C, C/N, δ13C, δ15N) of soils and sediments sampled from stream bank exposures, river suspensions, and the lake bottom were conducted to characterize organic C (OC) sources throughout the sedimentary system. Agriculturally-driven soil erosion rapidly altered lake bathymetry causing an evolution of sedimentary and OC deposition patterns, which in turn shaped where and when methane production occurred. A positive correlation between OC accumulation rate and porewater dissolved inorganic C (DIC) δ13C profiles indicates that methane generation is strongly influenced by OC burial rate. The sources of the lake bed particulate organic C (POC) have also evolved over time. Drowned vegetation and/or shoreline inputs were dominant initially in areas adjacent to the original river channel but were rapidly overwhelmed by the deposition of sediments derived from eroded agricultural soils. Eutrophication of the lake followed with the onset of heavy fertilizer application post-1960. This succession of sources is expected to be commonplace for reservoirs greater than ~ 50–60 years old in agricultural settings because of the relative timing of tillage and fertilizer practices. The 13C/12C ratios of methane from Lake Decatur were more depleted in 13C than what is commonly expected for freshwater sedimentary environments. The 13C-depletion suggests that CO2-reduction is the dominant methanogenic pathway rather than the anticipated acetate dissimilation process. The isotopic observations reveal that commonly held assumptions about methane production and its C-isotopic signature in freshwater systems are over-simplified and not strictly applicable to this system.


Datum: 01.04.2018


Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling

Abstract

Tidal freshwater ecosystems experience acute seawater intrusion associated with periodic droughts, but are expected to become chronically salinized as sea level rises. Here we report the results from an experimental manipulation in a tidal freshwater Zizaniopsis miliacea marsh on the Altamaha River, GA where diluted seawater was added to replicate marsh plots on either a press (constant) or pulse (2 months per year) basis. We measured changes in porewater chemistry (SO42−, Cl, organic C, inorganic nitrogen and phosphorus), ecosystem CO2 and CH4 exchange, and microbial extracellular enzyme activity. We found that press (chronic) seawater additions increased porewater chloride and sulfate almost immediately, and ammonium and phosphate after 2–4 months. Chronic increases in salinity also decreased net ecosystem exchange, resulting in reduced CO2 and CH4 emissions from press plots. Our pulse treatment, designed to mimic natural salinity incursion in the Altamaha River (September and October), temporarily increased porewater ammonium concentrations but had few lasting effects on porewater chemistry or ecosystem carbon balance. Our findings suggest that long-term, chronic saltwater intrusion will lead to reduced C fixation and the potential for increased nutrient (N, P) export while acute pulses of saltwater will have temporary effects.


Datum: 01.04.2018


Earthworm impacts on trace metal (Al, Fe, Mo, Cu, Zn, Pb) exchangeability and uptake by young Acer saccharum and Polystichum acrostichoides

Abstract

Non-native earthworms are a continued source of environmental change in the northeastern United States that may affect trace metals in the plant-soil system, with largely unknown effects. We assessed earthworm impacts on exchangeable and strong acid extractable (total) concentrations and pools of Al, Fe, Cu, Zn, Mo, Pb in non-point source polluted, forest soil horizons (Organic, A, and B) and foliar metals concentrations in young (< 3 years) Acer saccharum and Polystichum acrostichoides at four proximal forests in the Finger Lakes Region of New York. We observed decreasing total trace metal Organic horizon pools and increasing total trace metal A horizon concentrations as a function of increasing earthworm biomass. Earthworms had limited effects on exchangeable concentrations in A and B horizons and total metal concentrations in the B horizon. Foliar trace metal concentrations in Acer were better explained by earthworm biomass than soil concentrations but foliar concentrations for Polystichum were poorly predicted by both earthworm biomass and soil metal concentrations. Our results suggest that earthworms can affect trace metal uptake by some plants, but not by increasing soil trace metal exchangeability or from changing soil properties (pH, %SOM, or cation exchange capacity). Instead, non-native earthworms may indirectly alter understory plant uptake of trace metals.


Datum: 01.04.2018


In situ CH 4 oxidation inhibition and 13 CH 4 labeling reveal methane oxidation and emission patterns in a subarctic heath ecosystem

Abstract

Net methane (CH4) flux across the ecosystem-atmosphere boundary is governed by two counteracting processes, CH4 oxidation and production. Recent research on CH4 cycling has focused on net CH4 fluxes, however, the separate processes of CH4 oxidation and production may vary at local scales and respond differently to environmental change. Here, we separate CH4 oxidation and production, measured as emission, in situ using CH4 oxidation inhibition combined with a novel in situ 13CH4 labeling experiment to determine the rate of soil oxidation of atmospheric CH4. The study was conducted in a subarctic heath ecosystem with three characteristic plant community types: moist mixed species heath, dry Carex-dominated heath, and wet Eriophorum-dominated fen. We further explored the projected climate change effects of increased temperature and enhanced leaf litter input. The CH4 oxidation inhibition experiment revealed significant potential CH4 emission despite net CH4 uptake. Total CH4 oxidation and potential CH4 emission rates differed significantly between plant communities, demonstrating high local-scale variation in CH4 fluxes. Climate treatments did not affect CH4 oxidation rates, however, warming tended to increase potential CH4 emission, indicating that climate change may affect oxidation and production rates asymmetrically. Near-surface soil oxidation of atmospheric CH4 was successfully traced using 13C stable isotope labeling in situ. CH4 oxidation rates ranged widely, yet preliminarily suggested some degree of substrate limitation. Accounting for the local-scale variation in CH4 fluxes and the relative importance of the separate processes of CH4 oxidation and production will contribute importantly to predicting changes in landscape-scale CH4 budgets and climate feedbacks.


Datum: 01.04.2018


Net nitrogen mineralization in Alberta bog peat is insensitive to experimentally increased nitrogen deposition and time since wildfire

Abstract

Across northern Alberta, Canada, bogs experience periodic wildfire and, in the Fort McMurray region, are exposed to increasing atmospheric N deposition related to oil sands development. As the fire return interval shortens and/or growing season temperatures increase, the regional peatland CO2–C sink across northern Alberta will likely decrease, but the magnitude of the decrease could be diminished if increasing atmospheric N deposition alters N cycling in a way that stimulates post-fire successional development in bogs. We quantified net ammonification, nitrification, and dissolved organic N (DON) production in surface peat along a post-fire chronosequence of five bogs where we also experimentally manipulated N deposition (no water controls plus 0, 10, and 20 kg N ha−1 yr−1 simulated deposition, as NH4NO3). Initial KCl-extractable NH4+–N, NO3–N and DON averaged 176 ± 6, 54 ± 0.2, and 3580 ± 40 ng N cm−3, respectively, with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Net ammonification, nitrification, and DON production averaged 3.8 ± 0.3, 1.6 ± 0.2, and 14.3 ± 2.0 ng N cm−3 d−1, also with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Our hypothesis that N mineralization would be stimulated after fire because root death would create a pulse of labile soil organic C was not supported, most likely because ericaceous plant roots typically are not killed in boreal bog wildfires. The absence of any N mineralization response to experimental N addition is most likely a result of rapid immobilization of added NH4+–N and NO3–N in peat with a wide C:N ratio. In these boreal bogs, belowground N cycling is likely characterized by large DON pools that turn over relatively slowly and small DIN pools that turn over relatively rapidly. For Alberta bogs that have persisted at historically low N deposition values and begin to receive higher N deposition related to anthropogenic activities, peat N mineralization processes may be largely unaffected until the peat C:N ratio reaches a point that no longer favors immobilization of NH4+–N and NO3–N.


Datum: 01.04.2018


Transitional slopes act as hotspots of both soil CO 2 emission and CH 4 uptake in a temperate forest landscape

Abstract

Forest soils are an important component of CO2 and CH4 fluxes at the global scale, but the magnitude of these fluxes varies greatly in space and time within a landscape. Understanding the spatial and temporal distributions of these fluxes across complex landscapes remains a major challenge for researchers and land managers alike. We investigated the spatiotemporal variability of soil-atmosphere CO2 and CH4 fluxes and the relationships of these fluxes to chemical and physical soil properties distributed across a topographically-heterogeneous landscape. Soil CO2 and CH4 fluxes were measured along with soil temperature, moisture, bulk density, texture, carbon, sorption capacity, and dissolved organic matter quality over 2 years along hillslope transects spanning valley bottom, transition zone, and upland landscape positions in a temperate forest watershed. Transition zone soil CO2 efflux was 54–160% higher than low-lying valley bottoms, and 15–54% higher than uplands. Net seasonal CH4 uptake was 58–150% higher in transition zone soils than in uplands, while valley bottoms were occasionally large net sources (up to 19 nmol CH4 m−2 s−1). Soil CO2 efflux and net CH4 uptake were both positively associated with seasonal temperature, and were highest in soils with relatively high carbon and clay content, and relatively low bulk density, moisture, and sorption capacity. We concluded that: (1) transition zone soils act as landscape hotspots for net CH4 uptake in addition to CO2 efflux, and (2) that this spatial distribution is more consistent across seasons for net CH4 uptake than for CO2 efflux.


Datum: 01.04.2018


Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world

Abstract

Coastal North Carolina (USA) has experienced 35 tropical cyclones over the past 2 decades; the frequency of these events is expected to continue in the foreseeable future. Individual storms had unique and, at times, significant hydrologic, nutrient-, and carbon (C)-loading impacts on biogeochemical cycling and phytoplankton responses in a large estuarine complex, the Pamlico Sound (PS) and Neuse River Estuary (NRE). Major storms caused up to a doubling of annual nitrogen and tripling of phosphorus loading compared to non-storm years; magnitudes of loading depended on storm tracks, forward speed, and precipitation in NRE-PS watersheds. With regard to C cycling, NRE-PS was a sink for atmospheric CO2 during dry, storm-free years and a significant source of CO2 in years with at least one storm, although responses were storm-specific. Hurricane Irene (2011) mobilized large amounts of previously-accumulated terrigenous C in the watershed, mainly as dissolved organic carbon, and extreme winds rapidly released CO2 to the atmosphere. Historic flooding after Hurricanes Joaquin (2015) and Matthew (2016) provided large inputs of C from the watershed, modifying the annual C balance of NRE-PS and leading to sustained CO2 efflux for months. Storm type affected biogeochemical responses as C-enriched floodwaters enhanced air–water CO2 exchange during ‘wet’ storms, while CO2 fluxes during ‘windy’ storms were largely supported by previously-accumulated C. Nutrient loading and flushing jointly influenced spatio-temporal patterns of phytoplankton biomass and composition. These findings suggest the importance of incorporating freshwater discharge and C dynamics in nutrient management strategies for coastal ecosystems likely to experience a stormier future.


Datum: 17.03.2018


Influence of dimethyl sulfide on the carbon cycle and biological production

Abstract

Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes in phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.


Datum: 01.03.2018


Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans

Abstract

Large marine regions, including the exceptionally productive Southern Ocean, are iron-limited. As a result, there has been substantial interest in iron-fertilizing high nutrient low chlorophyll (HNLC) areas in an effort to sequester atmospheric carbon dioxide. More recently, research has shifted to quantifying the beneficial effects of iron recycling by marine biota. Marine top predators such as whales and seabirds have been examined specifically in this regard as they have high biomass, form dense aggregations, and excrete bioavailable iron in concentrations seven orders of magnitude higher than ambient seawater. Despite it being well established that marine fauna link the iron and carbon cycles, the connection of this process to the sulfur cycle has rarely been considered. The chemoattraction of specific marine fauna to algal-derived dimethyl sulfide (DMS) is key in triggering dense, multi-species foraging aggregations that induce iron recycling, augmenting carbon assimilation. The goal of this paper is twofold; first, to highlight DMS chemoattraction as a behavior that catalyzes carbon sequestration via natural iron fertilization, and second, to identify knowledge gaps that recent biogeochemical advances can address. Fostering this interdisciplinary research will enhance our understanding of global climate regulation, ecosystem services provided by marine top predators, and the biogeochemical cycles of carbon, iron, and sulfur in HNLC waters.


Datum: 01.03.2018


Amino acid δ 15 N indicates lack of N isotope fractionation during soil organic nitrogen decomposition

Abstract

The interpretation of natural abundance δ15N in soil profiles and across ecosystems is confounded by a lack of understanding of possible N isotope fractionation associated with soil organic nitrogen (SON) decomposition. We analyzed the δ15N of hydrolysable amino acids to test the extent of fractionation associated with the depolymerization of peptides to amino acids and the mineralization of amino acids to NH4+ (ammonification). Most amino acids are both synthesized and degraded by microbes, complicating interpretation of their δ15N. However, the “source” amino acids phenylalanine and hydroxyproline are degraded and recycled but not resynthesized. We therefore used their δ15N to isolate the effects of N isotope fractionation during SON depolymerization and ammonification. We used complementary field and laboratory approaches to evaluate the change in amino acid δ15N during decomposition. First, we measured amino acid δ15N changes with depth in the organic horizons of podzolic soils collected from the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect (NL-BELT), Canada. The δ15N of most amino acids increased with depth by 3–7‰, similar to the increase in bulk δ15N. However, the δ15N of the “source” amino acids did not change with depth, indicating lack of N isotope fractionation during their depolymerization and ammonification. Second, we assessed the change in amino acid δ15N following 400 days of laboratory incubation. This approach isolated the effect of decomposition on δ15N by eliminating plant N uptake and reducing leaching of N from the soil. Amino acid δ15N did not change during incubation despite extensive turnover of the amino acid pool, supporting our conclusion of a lack of N isotope fractionation during SON decomposition. Our results indicate the often-observed trend of increasing δ15N with soil depth likely results from the mycorrhizally-mediated transfer of 14N from depth to the surface and accumulation of 15N-enriched necromass of diverse soil microbes at depth, rather than as a direct result of SON decomposition.


Datum: 01.03.2018


Hydrologic and biogeochemical drivers of dissolved organic carbon and nitrate uptake in a headwater stream network

Abstract

Headwater streams are foci for nutrient and energy loading from terrestrial landscapes, in situ nutrient transformations, and downstream transport. Despite the prominent role that headwater streams can have in regulating downstream water quality, the relative importance of processes that can influence nutrient uptake have not been fully compared in heterotrophic aquatic systems. To address this research need, we assessed the seasonality of dissolved organic carbon (DOC) and nitrate (NO3) uptake, compared the relative influence of hydrologic and biogeochemical drivers on observed seasonal trends in nutrient uptake, and estimated the influence of these biological transformations on watershed scale nutrient retention and export. We determined that seasonal reductions in DOC and NO3 concentrations led to decreases in the potential for the biotic community to take up nutrients, and that seasonality of DOC and NO3 uptake was consistent with the seasonal dynamics of ecosystem metabolism. We calculated that that during the post-snowmelt period (June to August), biotic retention of both dissolved organic carbon and nitrate exceeded export fluxes from this headwater catchment, highlighting the potential for biological processes to regulate downstream water quality.


Datum: 01.03.2018


Isotopic characterization of NH x -N in deposition and major emission sources

Abstract

Large amounts of atmospheric N deposition cause negative effects on ecosystems. Effective mitigation strategies require the sources of N deposition to be identified and the contributions from individual sources to be quantified. Determination of the isotopic composition represents a useful approach in source apportionment. In this study, the δ15N-NHx of wet and dry atmospheric deposition and the main NH3 emission sources were analyzed at an urban, a suburban and a rural site in the Taihu Lake region of China. The 2-year average δ15N- \( {\text{NH}}_{4}^{ + } \) of precipitation was − 3.0 ± 2.3, − 3.1 ± 2.8 and − 0.5 ± 2.8‰ for the urban, suburban and rural sites, respectively. These values were much lower than the corresponding values for particulate \( {\text{NH}}_{4}^{ + } \) (15.9, 15.2 and 14.3‰ at the urban, suburban and rural sites, respectively), and much higher than those of gaseous δ15N-NH3 (− 16.7, − 18.2 and − 17.4‰ at the urban, suburban and rural sites, respectively). The δ15N-NH3 of NH3 from the main emission sources ranged from − 30.8 to − 3.3‰ for volatilized fertilizer, from − 35.1 to − 10.5‰ for emissions from a pig farm, and − 24.7 to − 11.3‰ for emissions from a dairy farm. Temporal variations of deposition δ15N-NHx indicated that δ15N-NHx values were lower in summer and autumn, but higher in winter and spring for both precipitation \( {\text{NH}}_{4}^{ + } \) -N and gaseous NH3-N. Weather conditions such as temperature and precipitation significantly influenced the spatial and temporal distribution of isotope values of the deposition. Analysis of δ15N-NHx in deposition and emission sources identified volatilized fertilizer and livestock wastes as the origins of both gaseous NH3-N and precipitation \( {\text{NH}}_{4}^{ + } \) -N over the region. A stable isotope mixing model estimated that volatilized fertilizer and animal excreta contributed more than 65% to precipitation \( {\text{NH}}_{4}^{ + } \) -N, more than 60% to particulate \( {\text{NH}}_{4}^{ + } \) -N, and more than 75% to gaseous NH3-N.


Datum: 01.03.2018


Restored floodplains enhance denitrification compared to naturalized floodplains in agricultural streams

Abstract

Predicted changes in the timing and magnitude of storms have the potential to amplify water quality challenges associated with agricultural runoff. In agricultural streams of the Midwestern US, floodplain restoration has the potential to enhance inorganic nitrogen (N) removal by increasing the bioreactive surface area for microbially-mediated denitrification. The restoration of inset floodplains via construction of the two-stage ditch increases denitrification compared to channelized systems, however, little is known about how denitrification on restored floodplains compares to those formed naturally when stream channel management lapses. We used sacrificial microcosm incubations and membrane-inlet mass spectrometry (MIMS) to compare denitrification rates in floodplain soils collected along transects in both naturalized and restored floodplains; longitudinal transects spanned two zones in the active floodplain (near-stream, NS vs. middle, MID) and a third zone that reflected upland conditions in the riparian buffer strip (UP). Denitrification rates were 35–49% higher in the restored, inset floodplains compared to naturalized floodplains. Variation in denitrification rates were primarily explained by soil organic matter (OM) and OM was > 20% higher in restored floodplains than naturalized, highlighting the contrasts between stable, constructed floodplains with heterogeneous, depositional bars typical of naturalizing channels. Consequently, restored inset floodplains could remove > 70% more N than the naturalized floodplains during similar storm inundation events.


Datum: 21.02.2018


In the path of the Hurricane: impact of Hurricane Irene and Tropical Storm Lee on watershed hydrology and biogeochemistry from North Carolina to Maine, USA

Abstract

Although many climate predictions suggest that the frequency and intensity of large storm events might increase in the coming decades, few studies document the full impact of such events along their path. Here, we synthesize information on the impact of Hurricane Irene (formed August 21 2011) and Tropical Storm Lee (formed August 30, 2011) on erosion and sediment transport, lake metabolism, riparian hydrology and biogeochemistry, and stream water quality, from North Carolina to Maine. In almost all cases, these storms generated unprecedented changes in water quality (concentrations, loads), from tenfold increases in DOC and 100-fold increases in POC in Maryland, to 100-fold increases in TSS concentrations in Pennsylvania. Overbank flooding and up to 200-year streamflow events were recorded in New York and Vermont. In many cases, particulate loads (e.g. POC, PP, TSS) occurring during Irene and Lee represented more than 30% of the annual load. The dominance of particulate exports over solutes during Irene and Lee is consistent with the mobilization of normally immobile sediment pools, and massive erosion as reported at many locations across the Northeastern US. Several studies reported long lasting (> 1 year) effects of Irene and Lee on cyanobacterial blooms, erosion, or stream suspended sediment concentrations. However, this review also highlighted the lack of a consistent strategy in terms of methods, and measured water quality parameters. This strongly hinders our ability to fully assess the large-scale impact of such events on our environment, and ultimately their impact on our economy and society.


Datum: 02.02.2018


Freeze-thaw cycles of Arctic thaw ponds remove colloidal metals and generate low-molecular-weight organic matter

Abstract

High-latitude boreal and arctic surface/inland waters contain sizeable reservoirs of dissolved organic matter (DOM) and trace elements (TE), which are subject to seasonal freezing. Specifically, shallow ponds and lakes in the permafrost zone often freeze solid, which can lead to transformations in the colloidal and dissolved fractions of DOM and TE. Here, we present results from experimental freeze-thaw cycles using iron (Fe)- and DOM-rich water from thaw ponds situated in Stordalen and Storflaket palsa mires in northern Sweden. After ten cycles of freezing, 85% of Fe and 25% of dissolved organic carbon (DOC) were removed from solution in circumneutral fen water (pH 6.9) but a much smaller removal of Fe and DOC (< 7%) was found in acidic bog water (pH 3.6). This removal pattern was consistent with initial supersaturation of fen water with respect to Fe hydroxide and a lack of supersaturation with any secondary mineral phase in the bog water. There was a nearly two- to threefold increase in the low-molecular-weight (LMW) fraction of organic carbon (OC) and several TEs caused by the repeated freeze-thaw cycles. Future increases in the freeze-thaw frequency of surface waters with climate warming may remove up to 25% of DOC in circumneutral organic-rich waters. Furthermore, an increase of LMW OC may result in enhanced carbon dioxide losses from aquatic ecosystems since this fraction is potentially more susceptible to biodegradation.


Datum: 01.02.2018


Beyond clay: towards an improved set of variables for predicting soil organic matter content

Abstract

Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.


Datum: 01.02.2018


Faster redox fluctuations can lead to higher iron reduction rates in humid forest soils

Abstract

Iron (Fe) minerals play an important role in carbon (C) and nutrient dynamics in redox fluctuating soils. We explored how the frequency of redox oscillations influence Fe reduction rates and C content in Puerto Rican soils. We hypothesized that iron reduction rates would be faster during short oscillation periods than in longer oscillation periods. Surface soils from an upland valley in a humid tropical forest were exposed to systematic redox oscillations over 49 days. The oxidation events were triggered by the introduction of air (21% O2), maintaining the time ratio under oxic or anoxic conditions at 1:6 (τoxanox). After pre-conditioning the soil to fluctuating redox conditions for 1 month, we imposed 280- and 70-h (or 11.67- and 2.5-day) redox oscillations, measuring FeII every few days. We found that by the end of the experiment, Fe reduction rates were higher in the short oscillation period (τox = 10 h, τanox = 60 h) than in the long oscillation period (τox = 40 h, τanox = 240 h). Carbon and nitrogen loss however was similar for both treatments. These results suggest the characteristics of redox fluctuations can alter rates of Fe reduction and potentially influence ecosystem processes that depend on iron behavior.


Datum: 01.02.2018


 


Category: Current Chemistry Research

Last update: 28.03.2018.






© 1996 - 2018 Internetchemistry














I agree!

This site uses cookies. By using this website, you agree to the use of cookies! Learn more ...