Hide Menu
Hide Menu   Home   |     About Us   |   Contact   |   Imprint   |   Privacy   |   Sitemap
Hide Menu   Chemistry Index   |   Chemicals   |   Chemical Elements
Hide Menu   Lab Instruments   |  
Hide Menu   Job Vacancies   |  
Hide Menu   Chemistry Forum   |  
Chemistry A - Z
Equipment for Lab and Industry
Chemicals and Compounds
Job Vacancies
Imprint, Contact

 

Journal of Atmospheric Chemistry

Current research reports and chronological list of recent articles..




The international scientific Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the atmosphere, with particular emphasis on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional scientific articles see Current Chemistry Research Articles. Magazines with similar content (atmospheric chemistry):

 - Atmospheric Chemistry and Physics.



Journal of Atmospheric Chemistry - Abstracts



Water-soluble ions and oxygen isotope in precipitation over a site in northeastern Tibetan Plateau, China

Abstract

A total of 30 precipitation samples were collected at a remote site of Qinghai Lake in the northeastern Tibetan Plateau, China, from June to August 2010. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+, and Mg2+) and anions (F, Cl, NO3, and SO42−), electric conductivity (EC), pH, dissolved organic carbon (DOC), and oxygen isotopic composition (δ18O). The volume-weighted mean (VWM) values of pH and EC in the precipitation samples were 7.2 and 19.0 μs cm−1. Ca2+ was the dominant cation in precipitation with a VWM of 116.9 μeq L−1 (1.6–662.9 μeq L−1), accounting for 45.7% of total ions in precipitation. SO42− was the predominant anion with a VWM of 32.7 μeq L−1, accounting for 47.1% of the total anions. The average precipitation DOC was 1.4 mg L−1, and it shows a roughly negative power function with the precipitation amount. The values of δ18O in the rainwater in Qinghai Lake varied from −13.5‰ to −3.9‰ with an average of −8.1‰. The enrichment factor analysis indicates that crustal materials from continental dust were the major sources for Ca2+ in the precipitation samples. The high concentration of Ca2+ in the atmosphere played an important role in neutralizing the acidity of rainwater in Qinghai Lake area. Cluster analysis of air-mass trajectories indicates that the air masses associated with northeast and east had high values of NH4+, SO42−, and NO3, whereas large Ca2+ loading was related to the air mass from west.


Datum: 17.06.2019


PM 2.5 and PM 10 in the urban area of Naples: chemical composition, chemical properties and influence of air masses origin

Abstract

In order to investigate particulate matter characteristics in the urban area of Naples, South of Italy, PM10 and PM2.5 chemical composition and properties were determined; in particular, ionic composition (Na+, K+, NH4+, Mg2+, Ca2+, HCOO-, CH3COO, Cl, NO2, NO3, SO42−, C2O42−) and concentration of specific metals (Pb, Cd, Cu and Zn) were evaluated in association with an air masses trajectories study. Information on major ions was used to conduct the ionic balance and to evaluate sea salt and non-sea salt contributions; furthermore, the study on metals concentration allowed to distinguish the contribution of anthropic sources while their chemical behaviour (solubility and leachability) was considered in order to highlight the presence of different chemical forms. In the period of interest (June 2015), daily averages PM concentrations were below the limit of 25 μg/m3 for PM2.5 and 50 μg/m3for PM10; moreover, for both fractions, the most abundant ionic species was SO42−followed by NO3. Ionic balance indicated that non-sea salt contribution accounted for the great part of Ca2+, SO42− and K+ while secondary inorganic aerosol accounted for about 5% of total ionic fraction. As expected, the most abundant metal was zinc (about 41 ng/m3 and 44 ng/m3in PM2.5 and PM10, respectively), while cadmium, copper and lead were at very low concentrations, in the range of 0.01–0.47 ng/m3; leachability reached values of 40% for copper in both PM fractions, in contrast with zinc that showed the lowest leachability, corresponding to 6% for PM2.5 fraction. The study on air masses trajectories indicated a change on ionic composition and chemical properties, varying from a condition with air masses coming from Eastern Europe, characterised also by higher concentrations of both PM2.5 and PM10, a prevalence of secondary aerosol and metals showing minor solubility and leachability, to a condition with air masses coming from North-west region, with characteristics opposed to the previous ones.


Datum: 01.06.2019


A one year study of functionalised medium-chain carboxylic acids in atmospheric particles at a rural site in Germany revealing seasonal trends and possible sources

Abstract

This study presents a yearlong data set of 28 medium-chain functionalised carboxylic acids (C5 to C10) in atmospheric aerosol particles (PM10) from a German rural measurement station, which is analysed to obtain seasonal trends and evidences for possible sources of these rarely studied compounds. The analysed carboxylic acids were divided into four main groups: (I) functionalised aliphatic monocarboxylic acids, (II) functionalised aromatic monocarboxylic acids, (III) non-functionalised and functionalised aliphatic dicarboxylic acids, and (IV) aromatic dicarboxylic acids. A concentration maximum in summer was observed for aliphatic carboxylic acids, indicating mainly photochemical formation processes. For example, the highest mean summer concentrations were observed for 4-oxopentanoic acid (4.1 ng m−3) in group I and for adipic acid (10.3 ng m−3) in group III. In contrast, a concentration maximum in winter occurred for aromatic carboxylic acids, hinting at anthropogenic sources like residential heating. The highest mean winter concentrations were observed for 4-hydroxybenzoic acid (2.4 ng m−3) in group II and for phthalic acid (5.8 ng m−3) in group IV. For the annual mean concentrations, highest values were found for adipic acid and 4-oxopimelic acids with 7.8 ng m−3 and 6.1 ng m−3, respectively. The concentrations of oxodicarboxylic acids exceeded those of their corresponding unsubstituted form. Accordingly, straight-chain dicarboxylic acids might act as precursor compounds for their respective oxygenated forms. Similarly, unsubstituted monocarboxylic acids are possible precursors for functionalised aliphatic monocarboxylic acids. The present study contributes to the speciation of organic content on a molecular level of atmospheric particles, as well as giving hints for possible sources for these carboxylic acids.


Datum: 01.06.2019


Assessment of polar organic aerosols at a regional background site in southern Africa

Abstract

A recent paper reported GCxGC-TOFMS analysis used for the first time in southern Africa to tentatively characterise and semi-quantify ~1000 organic compounds in aerosols at Welgegund – a regional background atmospheric monitoring station. Ambient polar organic aerosols characterised are further explored in terms of temporal variations, as well as the influence of meteorology and sources. No distinct seasonal pattern was observed for the total number of polar organic compounds tentatively characterised and their corresponding semi-quantified concentrations (sum of the normalised response factors, ∑NRFs). However, the total number of polar organic compounds and ∑NRFs between late spring and early autumn seemed relatively lower compared to the period from mid-autumn to mid-winter, while there was a period during late winter and early spring with significantly lower total number of polar organic compounds and ∑NRFs. Relatively lower total number of polar organic compounds and corresponding ∑NRFs were associated with fresher plumes from a source region relatively close to Welgegund. Meteorological parameters indicated that wet removal during late spring to early autumn also contributed to lower total numbers of polar organics and associated ∑NRFs. Increased anticyclonic recirculation and more pronounced inversion layers contributed to higher total numbers of polar organic species and ∑NRFs from mid-autumn to mid-winter, while the influence of regional biomass burning during this period was also evident. The period with significantly lower total number of polar organic compounds and ∑NRFs was attributed to fresh open biomass burning plumes occurring within proximity of Welgegund, consisting mainly of volatile organic compounds and non-polar hydrocarbons. Multiple linear regression substantiated that the temporal variations in polar organic compounds were related to a combination of the factors investigated in this study.


Datum: 01.06.2019


Ground-based observation of lightning-induced nitrogen oxides at a mountaintop in free troposphere

Abstract

Lightning is an important source of nitrogen oxides (LNOx). The actual global production of LNOx is still largely uncertain. One of the reasons for this uncertainty is the limited available observation data. We measured the concentrations of total reactive nitrogen (NOy), nitric oxide (NO) and nitrogen dioxides (NO2) and then obtained NOx oxidation products (NOz: NOz = NOy - NOx) at a station at the top of Mount Fuji (3776 m a.s.l.) during the summer of 2017. Increases in NOy and NO2 were observed on 22 August 2017. These peaks were unaccompanied by increases in CO, which suggested that the observed air mass did not contain emissions from combustion. The backward trajectories of the above air mass indicated that it moved across areas where lightning occurred. The NOy concentration was also calculated by using a chemical transport model, which did not take NOx produced by lightning into account. Therefore, the NOy concentration due to lightning can be inferred by subtracting the calculated NOy from the observed NOy concentrations. The concentration of NOy at 13:00 on 22 August 2017 originating from lightning was estimated to be 1.11 ± 0.02 ppbv, which comprised 97 ± 2% of the total NOy concentration. The fractions of NO2 and NOz in the total NOy were 0.54 ± 0.01 and 0.46 ± 0.03, respectively. The NO concentration was below the detection limit. We firstly observed increase of concentrations of NOy originating from lightning by ground-based observation and demonstrated the quantitative estimates of LNOx using model-based calculation.


Datum: 01.06.2019


Dissolved organic carbon in summer precipitation and its wet deposition flux in the Mt. Yulong region, southeastern Tibetan Plateau

Abstract

Dissolved organic carbon (DOC) is an important organic pollutant in the air-water carbon cycle system, potentially influencing the global climate. In this study, 204 rainwater samples from five sampling stations in the Mt. Yulong region were synchronously collected from June to September in 2014. We comprehensively investigated the sources and wet deposition of DOC in summer precipitation. The average concentrations of DOC at five stations ranged from 0.74 to 1.31 mg L−1. The mass absorption efficiency (MAE) of rainwater DOC evaluated at 365 nm was 0.43 ± 0.32 m2 g−1. Backward trajectory analyses indicated that the southwest advection air parcel accounting for 46% of precipitation events, while the corresponding average concentration of rainwater DOC was 1.25 ± 0.56 mg C L−1. In addition to the local or regional contribution, large amount of atmospheric pollutants were transported from South Asia and Southeast Asia to the Mt. Yulong region, both of which had exerted great influence on the regional atmospheric environment. For the first time, the annual wet deposition of DOC in the Mt. Yulong region was estimated and determined to be 1.99 g C m−2 year−1. This is significant because the deposition of DOC on glaciers has great influence on surface albedo of snow and glacier melt. This study can bridge the gap of rainwater DOC research between the Mt. Yulong region and the southeast of Tibetan Plateau (TP), which has significant implications for better understanding the relationship of DOC deposition and glacial shrink in the TP.


Datum: 01.03.2019


Seasonal variations and source apportionment of water-soluble inorganic ions in PM 2.5 in Nanjing, a megacity in southeastern China

Abstract

Daily PM2.5 samples were collected in Nanjing, a megacity in southeastern China, for a period of one-half of a month during every season from 2014~2015. Mass concentrations of nine water soluble inorganic ions (F, Cl, SO42−, NO3, Na+, NH4+, K+, Mg2+ and Ca2+) were determined using ion chromatography to identify the chemical characteristics and potential sources of PM2.5. The mass concentrations of daily PM2.5 ranged from 31.0 to 242.9 μg m−3, with an annual average and standard deviation of 94.4 ± 31.1 μg m−3. The highest seasonal average of PM2.5 concentrations was observed during winter (108.5 ± 31.8 μg m−3), and the lowest average was observed during summer (85.0 ± 22.6 μg m−3). The annual average concentration of total water soluble inorganic ions was 39.82 μg m−3, accounting for 44.4% of the PM2.5. The seasonal variation in water soluble inorganic ions in PM2.5 reached its maximum during autumn and reached its minimum during spring. Sulfate, nitrate and ammonium were the dominant water soluble inorganic species, with their combined proportion of 82.0% of the total water soluble inorganic ions and 36.8% of the fine particles. Seasonal variations in aerosol acidity and chemical forms of secondary inorganic ions were discussed. The average ratio of NO3/SO42− was 0.95. According to the results of principal component analysis, secondary sources, burning processes, and airborne dust were the dominant potential sources of PM2.5 in Nanjing.


Datum: 01.03.2019


Emission inventory of anthropogenic air pollutant sources and characteristics of VOCs species in Sichuan Province, China

Abstract

The purpose of this paper is to develop an emission inventory of anthropogenic air pollutants and VOCs species in Sichuan Province. Based on the anthropogenic source activity data collected in different cities of Sichuan Province and the selected emission factors, the 1 km × 1 km gridded atmospheric air pollutant emission inventory of 2015 was developed in the “bottom-up” and “top-down” approaches with the GIS technology. The results showed that the emissions of SO2, NOX, CO, PM10, PM2.5, BC, OC, VOCs and NH3 from anthropogenic sources in Sichuan Province were 444.9 kt, 820.0 kt, 3773.1 kt, 1371.6 kt, 537.5 kt, 28.7 kt, 53.1 kt, 923.6 kt and 988.0 kt, respectively. Power plants and other industrial combustion boilers contributed more than 95% of SO2 emission. Transportation, fossil fuel burning and industrial process contributed 54%, 23% and 20% of NOx emission respectively. Industrial process dominated by steel production and building material manufacturing contributed 20% of PM10 emission and 34% of PM2.5 emission. Fugitive dust dominated by road fugitive dust contributed 60% of PM10 emission and 35% of PM2.5 emission respectively. Biomass burning contributed 33% of BC emission and 51% of OC emission respectively. Solvent use of mechanical processing, building decoration, electronic equipment manufacturing, printing and furniture industry contributed 46% of VOCs emission. NH3 mainly came from the emission of agricultural sectors, such as livestock breeding and N-fertilizer application, which contributed 70% and 25% of NH3 emission respectively. The percentage of alkanes, alkenes, alkynes, aromatics, OVOCs, halohydrocarbons and other VOCs in the total VOCs emission were 17%, 9%, 2%, 23%, 22%, 4% and 23%, respectively. Ethene, m-xylene, toluene, propene, formaldehyde, o-xylene, 1, 2, 4-trimethyl benzene, 1-butene, p-xylene and ethyl benzene were the most critical chemical species for the formation of ozone pollution in Sichuan Province contributing 50% of the total OFP. Various air pollutants and OFP were mainly distributed in places with the densest population and well-developed agriculture and industry in Sichuan Basin and some areas of Panzhihua. The Chengdu Plain urban agglomerations, represented by Chengdu, Deyang and Mianyang, were the main areas with concentrated pollutant emissions in Sichuan Basin.


Datum: 01.03.2019


Elevated Barium concentrations in rain water from east-coast of India: role of regional lithology

Abstract

Alkaline earth metals act as dominating acid-neutralizing species in atmosphere and hence, regulate the rain water chemistry significantly. In this contribution, concentrations of these metals (Mg, Ca, Sr and Ba) and other major ions in rain water samples, collected during south-west monsoon of year 2017, from a coastal location (Berhampur) in eastern part of India have been analyzed to trace their provenances and controlling factors. The chemical compositions of rain water reveal oceanic and continental supply of Mg and Sr to the site, whereas Ca and Ba are pre-dominantly supplied through continental sources. The dominancy of continental fluxes at this coastal site is mainly due to particulate fluxes from regional lithologies and favorable wind pattern for long-range transport from south-western/western directions. An inverse model involving chemical mass balance between rain water composition and its possible sources have been adopted in this study to quantify the source(s) contributions. These model results show that the continental Mg is mainly derived from long-range transport of mafic minerals from Deccan Traps (40 ± 21%) with sub-ordinate contribution (15 ± 6%) from regional lithologies. On average, about 70% of rain water Ca at Berhampur is derived from carbonates, whereas most of the Ba (~95%) is supplied from regional silicates (charnockites and khondalites). Owing to faster dissolution kinetics of these silicates with higher Ba content, the silicates contribute most of the rain water Ba concentration over this region. The median Ba content (29 nM) at this location is systematically higher than available literature Ba data for rain water worldwide (1-22 nM). The observed higher concentrations of Ba, a micronutrient, in rain water emphasize important role of regional lithology in the biogeochemical cycling of nutrients over the region via wet deposition.


Datum: 01.03.2019


Effect of solubility limitation on hygroscopic growth and cloud drop activation of SOA particles produced from traffic exhausts

Abstract

Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and m-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (sc) and hygroscopic growth factor (gf) at 90% relative humidity. The hygroscopicity parameter κ was calculated for the two regimes: κsc and κgf, from measurements of sc and gf, respectively. The two κ showed significant discrepancies, with a κgf /κsc ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of sc and gf were compared to theoretical predictions, using modified Köhler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.


Datum: 01.12.2018


Correction to: Trace ambient levels of particulate mercury and its sources at a rural site near Delhi

The original version of this article unfortunately contained a mistake. In pages 5 and 6, a unit was misprinted. Please see below necessary corrections.


Datum: 01.12.2018


Trace ambient levels of particulate mercury and its sources at a rural site near Delhi

Abstract

Atmospheric particle-bound mercury levels were measured in PM10 aerosols (HgP) at a rural site (Mahasar, Haryana) during winter 2014–15 and summer 2015. The PM10 HgP was determined by using Differential Pulse Anodic Stripping Voltammetry through standard addition methods while the trace metals were determined by using an Atomic Absorption Spectroscopy. The mass concentrations of HgP varied from 591 to 1533 pg/m3 with an average of 1009 ± 306 pg/m3 during the winter, while the mass concentrations of HgP varied from 43 to 826 pg/m3 with an average of 320 ± 228 pg/m3 during the summer. However, it is difficult to assess whether these levels are harmful or not because there is no standard value available as National Ambient Air Quality Standard. The higher concentrations of HgP during winters were possibly due to favourable local meteorological conditions for the stagnation of particulate matter in the lower atmosphere and the increased emissions from existing natural or anthropogenic sources, regional sources and long-range transportation. Relatively low concentrations of HgP during summer might be due to increased mixing heights as well as scavenging effect because some light to heavy rain events were observed during summer time sampling. However, among other metals determined, the concentration of HgP was the lowest during both the seasons. The study may be useful in assessing the health impacts of PM10 HgP and other metals.


Datum: 01.12.2018


The impact of long-term regional air mass patterns on nutrient precipitation chemistry and nutrient deposition within a United States grassland ecosystem

Abstract

Changes in the frequency of precipitation as a result of a changing climate, as well as anthropogenic induced deposition of nitrogen (N), both have the potential to alter grassland productivity and diversity. Central U.S. weather patterns are dominated by three major air mass trajectories including regional sources from the Gulf of Mexico (marine tropical, Mt), the Pacific Northwest (mild pacific, mP), and the Desert Southwest (continental tropical, Ct). In this work, the Hybrid Single Particle Lagrangian Integrated Trajectory model was used to determine trends in the proportion of precipitation events from these air mass sources from 1983 to 2006 relative to Konza Prairie Biological Station (KPBS), KS. The annual volume-weighted mean (VWM) concentrations and wet deposition of a variety of precipitation dissolved solutes were linked to source regions north or south of KPBS. The proportion of precipitation events from Mt significantly increased, while the proportion of events from Ct and mP decreased significantly over the study period. The annual VWM concentrations of most solutes were typically higher from precipitation sourced to the north of KPBS. However, wet deposition of four ecologically relevant solutes (NH4+, NO3, H+, and SO4−2) was higher from events from the southern region, likely due to higher precipitation amounts. The proportion of reduced N increased significantly over the study period but was not affected by source region despite the higher use of fertilizers for agriculture in the northern source region. Given the location of this site relative to three dominant air mass paths, future shifts in these patterns will likely impact wet nutrient deposition.


Datum: 01.12.2018


Atmospheric abundance of HULIS during wintertime in Indo-Gangetic Plain: impact of biomass burning emissions

Abstract

This study reports for the first-time the ambient concentrations of HULIS mass (HULIS-OM, Humic-like substances) and HULIS-C (carbon) in PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) from the Indo-Gangetic Plain (IGP at Kanpur, wintertime). HULIS extraction followed by purification and isolation protocol with methanol: acetonitrile (1:1 v/v) on HLB (Hydrophilic-Lipophilic Balanced) cartridge has been established. Quantification of HULIS-C was achieved on a total organic carbon (TOC) analyser whereas HULIS-OM was determined gravimetrically. Consistently high recovery (> 90%) of HULIS-C based on analysis of Humic standard (sodium salt of Humic acid) suggested suitability of our established analytical protocol involving solvent extraction, purification and accurate quantification of HULIS. HULIS-OM varied from 17.3–38 μg m−3 during daytime and from 19.8–40.6 μg m−3 during night in this study. During daytime the HULIS-OM constituted 20–30% mass fraction of OMTotal and 10–15% of PM10 mass. However, a relatively low contribution of HULIS-OM has been observed during the night. This observation has been attributed to higher concentrations of OM and PM10 in night owing to nighttime chemical reactivity and condensation of organics in conjunction with shallower planetary boundary layer height. Strong correlation of HULIS-C with K+BB (R2 > 0.80) and significant day-night variability of HULIS-C/WSOC ratio in conjunction with air-mass back trajectories (showing transport of pollutants from upwind IGP) suggest biomass burning emission and secondary transformations as important sources of HULIS over IGP. High-loading of atmospheric PM10 (as high as 440 μg m−3) with significant contribution of water-soluble organic aerosols (WSOC/OC: ~ 0.40–0.80) during wintertime highlights their plausible potential role in fog and haze formation and their impact on regional-scale atmospheric radiative forcing over the IGP.


Datum: 01.12.2018


Seasonal and annual trends of carbonaceous species of PM 10 over a megacity Delhi, India during 2010–2017

Abstract

PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222 ± 87 (range: 48.2–583.8 μg m−3), 25.6 ± 14.0 (range: 4.2–82.5 μg m−3), 8.7 ± 5.8 (range: 0.8–35.6 μg m−3) and 54.7 ± 30.6 μg m−3 (range: 8.4–175.2 μg m−3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m−3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2 = 0.53), summer (R2 = 0.59) and monsoon (R2 = 0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.


Datum: 01.09.2018


A comprehensive study on the surface chemistry of particulate matter collected from Jeddah, Saudi Arabia

Abstract

In this work, the X-ray Photoelectron Spectroscopy (XPS) technique is utilized to analyze the surface chemical composition of particulate matter (PM) which was collected from various locations at Jeddah, Saudi Arabia. The main elements found on the surface of PM are carbon (C), oxygen (O) and silicon (Si) with combined percentage of 89.4–94.9 while traces of nitrogen (N), calcium (Ca), aluminum (Al), sodium (Na), chlorine (Cl), manganese (Mg), and sulfur (S) were also present. The analyzed XPS chemical state of C, O and Si was further used to determine their bonding with other elements occurring over the surface of PM. Carbon was found in the form of carbides (18.86%), fluorides (2.39%) and carbonates (78.75%); oxygen was observed as oxides (21.05%) and hydroxides (73.42%) of other metals; and silicon was detected as silicones (12.16%), nitrides (82.53%) and silicates (5.25%). The particle size of a PM is also of great concern for health issues, and thus has been investigated by the Field Emission Scanning Electron Microscope (FESEM). The Energy Dispersive X-ray Spectroscopy (EDS) was employed for cross verification of detected elements by XPS.


Datum: 01.09.2018


Insignificant impact of freezing and compaction on iron solubility in natural snow

Abstract

To explore the freezing effect on iron (Fe) solubility in natural environments, especially in Polar regions, event based freshly fallen snow samples were collected at Newark, New Jersey on the US East Coast for two consecutive winter seasons (2014–2015 and 2015–2016). These samples were analyzed for the concentrations of soluble iron (Fesol) using UV-Vis Spectroscopy and filterable iron (Fefil) and total iron (Fetot) using Atomic Absorption Spectroscopy. The average fractional solubility of the Fesol (the portion that passes through a 0.22 μm pore-size filter) with respect to the total Fe in the samples was 23.3 ± 12.2%, with the majority of the soluble Fe being present as Fe(III). Approximately 48.5% of the total Fe existed as Fefil (the portion that passes through 0.45 μm pore size filter media). No significant correlation was found between the soluble ionic species and soluble Fe. Six snow events were kept frozen for 10 days, and analyzed in periodic intervals to study the post-freezing modification in Fe solubility. Events 1 and 2 showed increasing trend in the soluble Fe concentrations; however, the events 5, 6, 7, and 8 showed no noticeable increments. The pattern shown in Events 1 and 2 is associated with high fraction of Fefil and one unit pH drop, suggesting that the freeze-induced modification in Fe solubility could be linked with the amount of Fefil and the acidity change in the samples. To further investigate the freeze-induced compaction of particles, samples from three events 6, 7, and 10 were analyzed by SEM-STEM-EDS microscopy, and the results showed that due to freezing, in general, the particles in the ice-melt counterparts tend to compact and cluster and form larger aggregates compared to the particles in snow-melt. These results show, despite the freeze-induced compaction in snow was observed from STEM images, the snow freezing might not have significant effect in increasing Fe solubility from materials in the snow. These results further suggest that freezing process with fresh snow in high-latitude regions may not impose significant modification on Fe solubility in snow.


Datum: 01.09.2018


Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest

Abstract

Temporal variations in atmospheric hydrogen sulphide concentrations and its biosphere-atmosphere exchanges were studied in the World’s largest mangrove ecosystem, Sundarbans, India. The results were used to understand the possible contribution of H2S fluxes in the formation of atmospheric aerosol of different size classes (e.g. accumulation, nucleation and coarse mode). The mixing ratio of hydrogen sulphide (H2S) over the Sundarban mangrove atmosphere was found maximum during the post-monsoon season (October to January) with a mean value of 0.59 ± 0.02 ppb and the minimum during pre-monsoon (February to May) with a mean value of 0.26 ± 0.01 ppb. This forest acted as a perennial source of H2S and the sediment-air emission flux ranged between 1213 ± 276 μg S m−2 d−1(December) and 457 ± 114 μg S m−2 d−1 (August) with an annual mean of 768 ± 240 μg S m−2d−1. The total annual emissions of H2S from the Indian Sundarban were estimated to be 1.2 ± 0.6 Tg S. The accumulation mode of aerosols was found to be more enriched with non-sea salt sulfate with an average loading of 5.74 μg m−3 followed by the coarse mode (5.18 μg m−3) and nucleation mode (1.18 μg m−3). However, the relative contribution of Non-sea salt sulfate aerosol to total sulfate aerosol was highest in the nucleation mode (83%) followed by the accumulation (73%) and coarse mode (58%). Significant positive relations between H2S flux and different modes of NSS indicated the likely link between H2S, a dominant precursor for the non-sea salt sulfate, and non-sea sulfate aerosol particles. An increase in H2S emissions from the mangrove could result in an increase in enhanced NSS in aerosol and associated cloud albedo, and a decrease in the amount of incoming solar radiation reaching the Sundarban mangrove forest.


Datum: 01.09.2018


Size-resolved characteristics of inorganic ionic species in atmospheric aerosols at a regional background site on the South African Highveld

Abstract

Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42− and ammonium (NH4+) dominated the PM1 size fraction, while SO42− and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42− had the highest contribution in the two smaller size fractions, while NO3 had the highest contribution in the PM2.5–10 size fraction. SO42− and NO3 levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42− was significantly lower due to SO42− being formed distant from SO2 emissions and submicron SO42− having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42−. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.


Datum: 01.09.2018


Water-soluble inorganic ions of size-differentiated atmospheric particles from a suburban site of Mexico City

Abstract

During the MILAGRO campaign, March 2006, eight-stage cut impactors were used to sample atmospheric particles at Tecámac (T1 supersite), towards the northeast edge of the Mexico City Metropolitan Area, collecting fresh local emissions and aged pollutants produced in Mexico City. Particle samples were analyzed to determine total mass concentrations of Ca2+, Mg2+, NH4+, K+, Cl, SO42−, and NO3. Average concentrations were 22.1 ± 7.2 μg m−3 for PM10 and 18.3 ± 6.2 μg m−3 for PM1.8. A good correlation between PM10 and PM1.8, without influence from wind patterns, indicates that local emissions are more important than the city’s pollution transported to the site, despite the fact that Tecámac is just 40 km away from Mexico City. A lack of diurnal patterns in the PM2.5/PM1.8 ratio supports this conclusion. The inorganic composition of particles suggests that vehicles, soil resuspension, and industries are the main pollutant sources. Finally, the particles were found to be neutralized, in agreement with observations in the Mexico City Metropolitan Area.


Datum: 01.06.2018


 


Category: Current Chemistry Research

Last update: 28.03.2018.






© 1996 - 2019 Internetchemistry














I agree!

This site uses cookies. By using this website, you agree to the use of cookies! Learn more ...