Hide Menu
Hide Menu   Home   |     About Us   |   Contact   |   Imprint   |   Privacy   |   Sitemap
Hide Menu   Chemistry Index   |   Chemicals   |   Chemical Elements
Hide Menu   Lab Instruments   |  
Hide Menu   Job Vacancies   |  
Hide Menu   Chemistry Forum   |  
Chemistry A - Z
Equipment for Lab and Industry
Chemicals and Compounds
Job Vacancies
Imprint, Contact

 

Amino Acids (Journal)

Current research reports and chronological list of recent articles..




The international scientific journal Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. A magazine with similar content (amino acids) is:

 - Journal of Amino Acids (Hindawi).



Amino Acids (Journal) - Abstracts



Editorial


Datum: 29.11.2021


β-Aminoisobutyric acid supplementation attenuated salt-sensitive hypertension in Dahl salt-sensitive rats through prevention of insufficient fumarase

Abstract

The human Dietary Approaches to Stop Hypertension-Sodium Trial has shown that β-aminoisobutyric acid (BAIBA) may prevent the development of salt-sensitive hypertension (SSHT). However, the specific antihypertensive mechanism remains unclear in the renal tissues of salt-sensitive (SS) rats. In this study, BAIBA (100 mg/kg/day) significantly attenuated SSHT via increased nitric oxide (NO) content in the renal medulla, and it induced a significant increase in NO synthesis substrates (l-arginine and malic acid) in the renal medulla. BAIBA enhanced the activity levels of total NO synthase (NOS), inducible NOS, and constitutive NOS. BAIBA resulted in increased fumarase activity and decreased fumaric acid content in the renal medulla. The high-salt diet (HSD) decreased fumarase expression in the renal cortex, and BAIBA increased fumarase expression in the renal medulla and renal cortex. Furthermore, in the renal medulla, BAIBA increased the levels of ATP, ADP, AMP, and ADP/ATP ratio, thus further activating AMPK phosphorylation. BAIBA prevented the decrease in renal medullary antioxidative defenses induced by the HSD. In conclusion, BAIBA’s antihypertensive effect was underlined by the phosphorylation of AMPK, the prevention of fumarase’s activity reduction caused by the HSD, and the enhancement of NO content, which in concert attenuated SSHT in SS rats.


Datum: 27.11.2021


Taurine protects dopaminergic neurons in paraquat-induced Parkinson’s disease mouse model through PI3K/Akt signaling pathways

Abstract

Taurine (Tau) is one of the most abundant amino acids in the brain and regulates physiological functions in the central nervous system, including anti-inflammatory effects. There is growing evidence that microglia-mediated neuro-inflammatory responses are an integral part of Parkinson’s disease (PD) onset and progression. Among the many factors regulating the inflammatory response, phosphatidylinositol-3 kinase (PI3K) is susceptible to activation by a variety of cytokines and physicochemical factors, and subsequently recruits signaling proteins containing the pleckstrin homology structural domain to further regulate protein kinase B (AKT) expression involved in the regulation of the intracellular immune response and inflammatory response. Therefore, we established a PD mouse model using paraquat (PQ) intraperitoneal injection staining to explore the mechanism of Tau action on PI3K/AKT signaling pathway. Our study showed that PD mice with Tau intervention recovered motor and non-motor functions to some extent, and the number of dopaminergic (DAc) neurons in the substantia nigra and the level of dopamine (DA) secretion in the striatum were also significantly increased compared with the PQ-dyed group, and the protein content of PI3K and PDK-1 and the phosphorylation level of AKT were reduced in parallel with the reduction in the expression of microglia and related inflammatory factors. In conclusion, our results suggest that Tau may regulate microglia-mediated inflammatory responses through inhibition of the PI3K/AKT pathway in the midbrain of PD mice, thereby reducing DAc neurons damage.


Datum: 27.11.2021


Transcriptome analysis of l-leucine-producing Corynebacterium glutamicum under the addition of trimethylglycine

Abstract

It has been widely reported that the addition of trimethylglycine (betaine) decreases osmotic pressure inhibition for cell growth, leading to increased production of amino acids. However, the underlying mechanism is unclear. To determine the global metabolic differences that occur under the addition of trimethylglycine, transcriptome analysis was performed. Transcriptome analysis of Corynebacterium glutamicum JL1211 revealed that 272 genes exhibited significant changes under trimethylglycine addition. We performed Gene Ontology (GO) and KEGG enrichment pathway analyses on these differentially expressed genes (DEGs). Significantly upregulated genes were mainly involved in the regulation of ABC transporters, especially phosphate transporters and sulfur metabolism. The three phosphate transporter genes pstC, pstA and pstB were upregulated by 13.06-fold, 29.80-fold and 30.49-fold, respectively. Notably, the transcriptional levels of the cysD, cysN, cysH and sir genes were upregulated by 81.5-fold, 57.3-fold, 77.6-fold and 125.4-fold, respectively, consistent with assimilatory sulfate reduction under the addition of trimethylglycine. The upregulation of ilvBN and leuD genes might result in increased l-leucine formation. The data indicated changes in the transcriptome of C. glutamicum with trimethylglycine treatment, thus providing a mechanism supporting the application of trimethylglycine in the production of l-leucine and other amino acids by C. glutamicum strains.


Datum: 27.11.2021


miR27a, a fine-tuning molecule, interacts with growth hormone (GH) signaling and ornithine decarboxylase (ODC) via targeting STAT5

Abstract

Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and differentiation. The importance of miR27a has shown to exert a suppressive effect on ornithine decarboxylase (ODC) expression in dwarf mice models. We aimed to modulate the role of A13S, F166Δ, T24 GH gene mutations’ impact on PA metabolism and epithelial–mesencyhmal transition (EMT) pathway through miR27a. Biologically active GH signaling triggered cell viability, growth, and colony formation, but T24A alteration significantly decreases aggressive profiles due to inactive GH signaling through a decline in STAT5 activity and expressions of STAT5, c-myc and ODC. Although statistically significant increase in intracellular PA levels in wt GH signaling HEK293 cells compared to HEK293 cells with a lack of GH signaling, a sharp decline in PA levels measured in each mutant GH expressing HEK293 cells. When we inhibited miR27a, proliferation and colony formation accelerated through a significant increase in putrescine levels and upregulation of ODC, STAT5 expression. In contrast, a substantial decline in GH-mediated colony enlargement observed via ODC, STAT5 downregulation, and PA depletion in both wt and mutant GH expressing HEK293 cell lines by miR27a mimic transfection. In conclusion, T24A mutant GH expression declines the GH signaling through STAT5 activity, and mutant GH signaling decreased cell proliferation, division, and colony formation via EMT inhibition. The autocrine GH-mediated proliferative profiles were under the control of miR27a that depletes intracellular putrescine levels via targeting ODC.


Datum: 26.11.2021


The effects of incorporation of the counterparts and mimics of l-lysine on the antimicrobial activity, hemolytic activity, cytotoxicity and tryptic stability of antimicrobial peptide polybia-MPII

Abstract

Due to the limited effects of conventional antibiotics on the increasing emergence of drug-resistant bacteria and fungi, novel antimicrobial agents were urgently needed to alleviate this phenomenon. Nowadays, antimicrobial peptides are believed to be a promising candidate for a new generation of antimicrobial drugs. Antimicrobial peptide polybia-MPII (MPII) was first isolated from the venom of the social wasp Polybia paulista with a broad spectrum of antimicrobial activity. In the present study, the counterparts and mimics of cationic amino acids of Lys, such as Arg, His, Orn, Dab and Dap were employed to substitute Lys in the sequence of MPII. The effects of the incorporation of these amino acids on its antimicrobial activity, hemolytic activity, cytotoxicity, enzyme stability and therapeutic potential were explored. Our results showed that although the incorporation of Arg could improve its antimicrobial activity, there is no improvement in enzyme stability. The incorporation of His makes MPII exert its antimicrobial activity in a pH-dependent manner. Notably, incorporating Dap could effectively decrease its hemolytic activity and cytotoxicity and enhance its enzyme stability against trypsin. In conclusion, this study would provide an effective strategy to improve the bioavailability and metabolic stability of AMPs while decrease their hemolytic activity and cytotoxicity.


Datum: 26.11.2021


Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis

Abstract

In the 35 years since the introduction of the “proline cycle”, its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.


Datum: 26.11.2021


Involvement of the fecal amino acid profile in a clinical and anthropometric study of Mexican patients with insulin resistance and type 2 diabetes mellitus

Abstract

The amino acids synthesized by the intestinal microbiota have been correlated with metabolic diseases, such as type 2 diabetes mellitus and insulin resistance; both are high incidence conditions in Mexico. However, the knowledge of the relationship of fecal amino acids with the development of both diseases in the Mexican population is scarce. The clinical study was descriptive; the study was carried out in the Antiguo Civil Hospital of Guadalajara. Samples were taken from a total of 48 participants with insulin resistance, diabetes, and a control group (n = 16 each). Anthropometric and biochemical measures were evaluated. HPLC carried out the quantification of fecal amino acids. A strong correlation between alanine and HOMA-IR (r = 0.5416) was found and between phenylalanine and HOMA-IR (r = 0.4258). Other interesting correlations were between alanine and glucose (r = 0.5854) and isoleucine and glucose (r = 0.5008). The diabetic group and the insulin-resistant group had increased fecal values of valine and isoleucine (branched-chain amino acids), which were positively correlated with the progression of both conditions. Likewise, alanine and phenylalanine can help predict the development of the disease in the Mexican population. Registry number: 037/19.


Datum: 25.11.2021


Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations

Abstract

COVID-19 has shaken all the countries across the globe and researchers are trying to find promising antiviral to cure the patients suffering from infection and can decrease the death. Even, different nations are using repurposing drugs to cure the symptoms and these repurposing drugs are hydroxychloroquine, remdesivir, and lopinavir, and recently, India has recently given the approval for the 2-deoxy-d-glucose for emergency purpose to cure the patients suffering from the COVID-19. Plitidepsin is a popular molecule and can be used in treatment of myeloma. Plitidepsin was explored by scientists experimentally against the COVID-19 and was given to the patient. It is found to be more a promising repurposing drug against the COVID-19 than the remdesivir. Therefore, there is a need to understand the interaction of plitidepsin with the main protease of SARS-CoV-2. Molecular docking of the plitidepsin against Mpro of SARS-CoV-2 was performed and the binding energy was found to be − 137.992 kcal/mol. Furthermore, authors have performed the molecular dynamics simulations of the main protease of SARS-CoV-2 in presence of plitidepsin at 300 and 325 K. It was found that the plitidepsin binds effectively with the main protease of SARS-CoV-2 at 300 K.


Datum: 22.11.2021


Targeted fluorescent imaging of a novel FITC-labeled PSMA ligand in prostate cancer

Abstract

In this study, we synthesized a novel fluorescein isothiocyanate (FITC)-labeled prostate-specific membrane antigen (PSMA) ligand (PSMA-FITC) via the Fmoc solid-phase synthesis method, and the application value of PSMA-FITC in targeted fluorescence imaging of PSMA-positive prostate cancer was evaluated. The PSMA ligand developed based on the Glu-urea-Lys structure was linked to FITC by aminocaproic acid (Ahx) to obtain PSMA-FITC. The new probe was evaluated in vitro and in vivo. Fluorescence microscopy examination of PSMA-FITC in PSMA(+) LNCaP cells, PSMA(−) PC3 cells, and blocked LNCaP cells showed that the binding of PSMA-FITC with PSMA was target-specific. For in vivo optical imaging, PSMA-FITC exhibited rapid 22Rv1 tumor targeting within 30 min of injection, and the highest tumor-background ratio (TBR) was observed 60 min after injection. The TBR was 3.45 ± 0.31 in the nonblocking group and 0.44 ± 0.13 in the blocking group, which was consistent with the in vitro results. PSMA-FITC is a promising probe and has important reference value for the development of PSMA fluorescent probes. In the future, it can be applied to obtain accurate tumor images for radical prostatectomy.


Datum: 20.11.2021


Targeted metabolomics analysis of serum amino acid profiles in patients with Moyamoya disease

Abstract

Amino acids are one of the main metabolites in the body, and provide energy for the body and brain. The purpose of this study is to provide a profile of amino acid changes in the serum of patients with Moyamoya disease (MMD) and identify potential disease biomarkers. In this paper, we quantitatively determined the serum amino acid metabolic profiles of 43 MMD patients and 42 healthy controls (HCs). T test, multivariate statistical analysis, and receiver operating characteristic (ROC) curve analysis were used to identify candidate markers. Thirty-nine amino acids were quantified, and 12 amino acid levels differed significantly between the MMD patients and HCs. Moreover, based on ROC curve analysis, four amino acid (l-methionine, l-glutamic acid, β-alanine and o-phosphoserine) biomarkers showed high sensitivity and specificity (AUC > 0.90), and showed the best sensitivity and specificity in MetaboAnalyst 5.0 using binary logistic regression analysis. We have provided serum amino acid metabolic profiles of MMD patients, and identified four potential biomarkers which may both provide clinicians with an objective diagnostic method for early detection of MMD and further our understanding of MMD pathogenesis.


Datum: 20.11.2021


Kinetics of human pyrroline-5-carboxylate reductase in l-thioproline metabolism

Abstract

l-Thioproline (l-thiazolidine-4-carboxylate, l-T4C) is a cyclic sulfur-containing analog of l-proline found in multiple kingdoms of life. The oxidation of l-T4C leads to l-cysteine formation in bacteria, plants, mammals, and protozoa. The conversion of l-T4C to l-Cys in bacterial cell lysates has been attributed to proline dehydrogenase and l-Δ1-pyrroline-5-carboxylate (P5C) reductase (PYCR) enzymes but detailed kinetic studies have not been conducted. Here, we characterize the dehydrogenase activity of human PYCR isozymes 1 and 2 with l-T4C using NAD(P)+ as the hydride acceptor. Both PYCRs exhibit significant l-T4C dehydrogenase activity; however, PYCR2 displays nearly tenfold higher catalytic efficiency (136 M−1 s−1) than PYCR1 (13.7 M−1 s−1). Interestingly, no activity was observed with either l-Pro or the analog dl-thiazolidine-2-carboxylate, indicating that the sulfur at the 4-position is critical for PYCRs to utilize l-T4C as a substrate. Inhibition kinetics show that l-Pro is a competitive inhibitor of PYCR1 \(\left({K_{IC}^{app}}=15.7 \,{\rm mM} \right)\) with respect to l-T4C, consistent with these ligands occupying the same binding site. We also confirm by mass spectrometry that l-T4C oxidation by PYCRs leads to cysteine product formation. Our results suggest a new enzyme function for human PYCRs in the metabolism of l-T4C.


Datum: 18.11.2021


Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances NO and polyamine syntheses and the expression of angiogenic proteins in porcine placentae

Abstract

Dietary supplementation with 0.4 or 0.8% l-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn–soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental  mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.


Datum: 06.11.2021


Rational design and synthesis of modified natural peptides from Boana pulchella (anura) as acetylcholinesterase inhibitors and antioxidants

Abstract

The use of acetylcholinesterase (AChE) inhibitors, antioxidants or multitarget compounds are among the main strategies against Alzheimer’s disease (AD). Between AChE inhibitors, those targeting the peripheral anionic site (PAS) are of special interest. Here, we describe the rational design and synthesis of peptide analogs of a natural PAS-targeting sequence that we recently discovered, aiming at increasing its activity against AChE. We also tested their radical scavenging and metal chelating properties. Our design strategy was based on the position-specific, computer-aided insertion of aromatic residues. The analog named as W3 showed a 30-fold higher inhibitory activity than the original sequence and an improved antioxidant activity. W3 is the most potent modified natural peptide against Electrophorus electricus AChE ever reported with an IC50 of 10.42 μM (± 1.02). In addition, it showed a radical scavenging activity of 47.00% ± 3.11 at 50 μM and 93.47% ± 1.53 at 400 μM. Since peptides are receiving increasing interest as drugs, we propose the W3 analog as an attractive sequence for the development of new peptide-based multitarget drugs for AD. Besides, this work sheds light on the importance of the aromatic residues in the modulation of AChE activity and their effect on the radical scavenging activity of a peptide.


Datum: 05.11.2021


Development and validation of multiple machine learning algorithms for the classification of G-protein-coupled receptors using molecular evolution model-based feature extraction strategy

Abstract

Machine learning is one of the most potential ways to realize the function prediction of the incremental large-scale G-protein-coupled receptors (GPCR). Prior research reveals that the key to determining the overall classification accuracy of GPCR is extracting valuable features and filtering out redundancy. To achieve a more efficient classification model, we put the feature synonym problem into consideration and create a new method based on functional word clustering and integration. Through evaluating the evolution correlation between features using the transition scores in mature molecular substitution matrices, candidate features are clustered into synonym groups. Each group of the clustered features is then integrated and represented by a unique key functional word. These retained key functional words are used to form a feature knowledge base. The original GPCR sequences are then transferred into feature vectors based on a feature re-extraction strategy according to the features in the knowledge base before the training and testing stage. We create multiple machine learning models based on Naïve Bayesian (NB), random forest (RF), support vector machine (SVM), and multi-layer perceptron (MLP) algorithms. The established model is applied to classify two public data sets containing 8354 and 12,731 GPCRs, respectively. These models achieve significant performance in almost all evaluation criteria in comparison with state-of-the art. This work demonstrated the potential of the novel feature extraction strategy and provided an effective theoretical design for the hierarchical classification of GPCRs.


Datum: 01.11.2021


Sulbactam improves binding property and uptake capacity of glutamate transporter-1 and decreases glutamate concentration in the CA1 region of hippocampus of global brain ischemic rats

Abstract

Glutamate transporter-1 (GLT-1) removes most glutamate in the synaptic cleft. Sulbactam confers neuronal protection against ischemic insults in the hippocampal CA1 region accompanied by the upregulation of GLT-1 expression in rats. The present study further investigates the effect of sulbactam on the binding property and uptake capacity of GLT-1 for glutamate, and the change in extracellular glutamate concentration in the hippocampal CA1 region of rats with global brain ischemia. The binding property and uptake capacity of GLT-1 were measured using a radioligand binding and uptake assay, respectively, with L-3H-glutamate. The extracellular glutamate concentration was detected using microdialysis and high-performance liquid chromatography–mass spectrometry. Neuropathological evaluation was performed based on thionin staining. It was shown that sulbactam pre-treatment changed GLT-1 binding property, including increased Bmax and decreased Kd values, increased GLT-1 uptake capacity for glutamate, and inhibited the elevation of extracellular glutamate concentration in rats with global cerebral ischemia. These effects of sulbactam were accompanied by its neuronal protection on the hippocampal CA1 neurons against delayed neuronal death resulted from ischemic insult. Furthermore, administration of GLT-1 antisense oligodeoxynucleotides, which inhibited the expression of GLT-1, blocked the aforementioned sulbactam-related effects, which suggested that GLT-1 upregulation mediated the above effect although other mechanisms independent of the upregulation of GLT-1 expression could not be excluded. It could be concluded that sulbactam improves the binding property and uptake capacity of GLT-1 for glutamate and then reduces the glutamate concentration and excitotoxicity during global cerebral ischemia, which contributes to the neuroprotection of sulbactam against brain ischemia.


Datum: 01.11.2021


Authentication of three main commercial Pheretima based on amino acids analysis

Abstract

Pheretima has been used as an animal-derived traditional Chinese medicine for thousands of years in Asian countries due to its multi-activities. However, more than half of the commercial Pheretima are adulterants according to the previous research. Besides, the standards of Pheretima are still inadequate in the identification of Pheretima species. In this study, an amino acids (AAs) analytical method established based on the ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS) in multiple reaction monitoring (MRM) mode through derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) was used for qualitative and quantitative analysis of the total AAs of three main commercial Pheretima (two major Pheretima species, Amynthas aspergillum, Metaphire vulgaris, and one main counterfeit, M. magna). As a result, 16 AAs were detected and quantitated in their hydrolyzed samples. Then, multivariate statistical analysis was applied to distinguish the three commercial Pheretima based on their AAs level. Finally, four AAs (Thr, Glu, Asp, and Arg) were screened as species-differential AAs, which may be used as chemical markers to distinguish the three commercial Pheretima. This study deeply described the outline of AAs in Pheretima and offered a good reference for its species authentication.


Datum: 01.11.2021


Molecular insight into the affinity, specificity and cross-reactivity of systematic hepatocellular carcinoma RALT interaction profile with human receptor tyrosine kinases

Abstract

The ErbB family of receptor tyrosine kinases (RTKs) contains four members: EGFR, ErbB2, ErbB3 and ErbB4; they are involved in the tumorigenesis of diverse cancers and can be inhibited natively by receptor-associated late transducer (RALT), a negative feedback regulator of ErbB signaling in human hepatocytes and hepatocellular carcinoma. Although the biological effects of RALT on EGFR kinase have been widely documented previously, the binding behavior of RALT to other ErbB/RTK kinases still remains largely unexplored. Here, the intermolecular interactions of RALT ErbB-binding region (EBR) as well as its functional sections and peptide segments with ErbBs and other human RTKs were systematically investigated at molecular and structural levels, from which we were able to identify those potential kinase targets of RALT protein, and to profile the affinity, specificity and cross-reactivity of RALT EBR domain and its sub-regions against various RTKs. It is revealed that RALT can target all the four ErbB kinases with high affinity for EGFR/ErbB2/ErbB4 and moderate affinity for ErbB3, but generally exhibits modest affinity to other RTKs, albeit few kinases such as LTK, EPHB6, MET and MUSK were also top-ranked as the unexpected targets of RALT. Peptide segments covering the key binding regions of RALT EBR domain were identified with computational alanine scanning, which were then optimized to obtain a number of designed peptide mutants with improved selectivity between different top-ranked RTKs.


Datum: 01.11.2021


Activation of whole body by high levels of polyamine intake in rats

Abstract

Polyamines are important to the survival and activation of organs and tissues via a homeostatic cell-metabolic process, and the polyamine content in cytoplasm decreases with aging. Decreases in cellular polyamine have been known to augment mutagenesis and cell death. Thus, supplementary polyamine in food is important to the prevention of aging. Here we show the anti-aging effects of oral intake of polyamine using luciferase-transgenic rats. Healthy rats, 10–12 weeks old, were given foods containing 0.01% and 0.1% (w/w) of polyamine, as compared a control food without polyamine, for 4 weeks. Using a bioimaging system, the photon intensities seen in the whole bodies and livers of rats consuming 0.1% of polyamine in food were stronger than those in rats consuming 0.01% and 0% of polyamine. However, there were no differences between groups in other characteristics, such as liver damage and body weight. In conclusion, we found that polyamine intake can activate cells throughout the whole body, providing an anti-aging effect.


Datum: 01.11.2021


Insulin stimulates β-alanine uptake in skeletal muscle cells in vitro

Abstract

We evaluated whether insulin could stimulate β-alanine uptake by skeletal muscle cells in vitro. Mouse myoblasts (C2C12) (n = 3 wells per condition) were cultured with β-alanine (350 or 700 µmol·L−1), with insulin (100 µU·mL−1) either added to the media or not. Insulin stimulated the β-alanine uptake at the lower (350 µmol·L−1) but not higher (700 µmol·L−1) β-alanine concentration in culture medium, indicating that transporter saturation might blunt the stimulatory effects of insulin.


Datum: 01.11.2021


 


Category: Current Chemistry Research

Last update: 28.03.2018.






© 1996 - 2020 Internetchemistry














I agree!

This site uses cookies. By using this website, you agree to the use of cookies! Learn more ...