[Sitemap] [Contact] [Imprint] Deutsche Version Search site 

Kategorie

Published: 22.11.2011

BN-Methylcyclopentane: A Liquid-based Hydrogen Storage Material



New material may boost efforts to convert gasoline infrastructure into one based on hydrogen.

EUGENE, Ore. - University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable - an accomplishment that offers a possible route through current storage and transportation obstacles.

Reporting in a paper placed online ahead of publication in the Journal of the American Chemical Society, a team of four UO scientists describes the development of a cyclic amine borane-based platform called BN-methylcyclopentane. In addition to its temperature and stability properties, it also features hydrogen desorption, without any phase change, that is clean, fast and controllable.

It uses readily available iron chloride as a catalyst for desorption, and allows for recycling of spent fuel into a charged state.

Hydrogen Release with Iron Catalyst

Stored hydrogen releases in the presence of iron chloride via a storage technology created in the University of Oregon lab of Shih-Yuan Liu.

[Courtesy of Shih-Yuan Liu]

The big challenges to move this storage platform forward, researchers cautioned, are the needs to increase hydrogen yield and develop a more energy efficient regeneration mechanism.

"In addition to renewable hydrogen production, the development of hydrogen storage technologies continues to be an important task toward establishing a hydrogen-based energy infrastructure," said Shih-Yuan Liu, professor of chemistry and researcher in the UO Material Sciences Institute.

The U.S. Department of Energy, which funded the research, is shooting to develop a viable liquid or solid carrier for hydrogen fuel by 2017. The new UO approach differs from many other technologies being studied in that it is liquid-based rather than solid, which, Liu says, would ease the possible transition from a gasoline to a hydrogen infrastructure.

"The field of materials-based hydrogen storage has been dominated by the study of solid-phase materials such as metal hydrides, sorbent materials and ammonia borane," Liu said. "The availability of a liquid-phase hydrogen storage material could represent a practical hydrogen storage option for mobile and carrier applications that takes advantage of the currently prevalent liquid-based fuel infrastructure."

The key is in the chemistry. Liu's team originally discovered six-membered cyclic amine borane materials that readily trimerize - form a larger desired molecule - with the release of hydrogen. These initial materials, however, were solids. By tweaking the structure, including reducing the ring size from 6- to a 5-membered ring, the group succeeded in creating a liquid version that has low vapor pressures and does not change its liquid property upon hydrogen release.

Initially, the new platform could be more readily adopted for use in portable fuel cell-powered devices, said Liu, who also is a member of Oregon BEST (Built Environment & Sustainable Technologies Center).


About Oregon BEST

The Oregon Built Environment & Sustainable Technologies Center brings together Oregon's significant R&D strengths in the key emerging areas of renewable energy and green building products and services, with the goal of increasing research and accelerating public/private partnerships to transform that research into on-the-ground business opportunities and Oregon jobs. Oregon BEST partners include the Oregon Institute of Technology, Oregon State University, Portland State University, the University of Oregon, as well as numerous private businesses, government agencies and non-governmental organizations.





Notes:



 
Further Information and Source:
-
Wei Luo, Patrick G. Campbell, Lev N. Zakharov, and Shih-Yuan Liu:
A Single-Component Liquid-Phase Hydrogen Storage Material.
In: Journal of the American Chemical Society; Publication Date (Web): November 9, 2011
DOI: 10.1021/ja208834v
URL: direct link
-
Oregon BEST, Oregon Built Environment and Sustainable Technologies Center
-
-
Chemistry Department, University of Oregon
-
Source: University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.
 
Related Information:
-
Permalink:
http://www.internetchemistry.com/news/2011/nov11/liquid-hydrogen-storage.html
-
Publish your Press Release ...
-
More on the topic (background information, research articles, etc.): See top left menu bar!


Chemistry information not found? Try this form:
Custom Search

Internetchemistry ChemLin 1996 - 2013 A. J. - last update 22.11.2011