[Sitemap] [Contact] [Imprint] Deutsche Version Search site 

Photosynthesis Research - Current Research Articles



Current research articles: Photosynthesis

The author- or copyrights of the listed research articles below are held by the respective authors or site operators, who are also responsible for the content of the presentations.

More current articles from Chemistry Journals same topic: see the navigation menu on the left.

To list your article here please contact us by eMail.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!




On this page considered journals:



Photosynthesis Research - published by Springer

... is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis.




Current articles of the journal:



Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression

Abstract

Chloroplast development is regulated by many biological processes. However, these processes are not fully understood. Leaf variegation mutants have been used as powerful models to elucidate the genetic network of chloroplast development since the degree of leaf variegation is regulated by developmental and environmental cues. The thylakoid formation 1 (thf1) mutant is unique for its variegation in both leaves and cotyledons. Here, we reported a new suppressor gene of thf1 leaf variegation, designated sot8. Map-based cloning and DNA sequencing results showed that a single nucleotide mutation from G to A was detected in the second exon of the gene encoding the ribosomal protein small subunit 9 (PRPS9) in sot8-1, resulting in an amino acid change and a partial loss of PRPS9 function. However, sot8-1 was unable to rescue the thf1 phenotype in low photosystem II activity (Fv/Fm). In addition, we identified two T-DNA insertion mutants defective in plastid-specific ribosomal proteins (PSRPs), psrp2-1, and psrp5-1. Genetic analysis showed that knockdown of PSRP5 expression but not PSRP2 expression suppressed leaf variegation. Northern blotting results showed that precursors of plastid rRNAs over-accumulated in prps9-1 and psrp5-1, indicating that mutations in PRPS9 and PSRP5 cause a defect in rRNA processing. Consistently, inhibition of plastid protein synthesis by spectinomycin led to increased levels of plastid rRNA precursors in wild-type plants, suggesting that rRNA processing and plastid ribosomal assembly are coupled. Taken together, our data indicate that downregulating the expression of specific plastid ribosomal proteins suppresses thf1 leaf variegation, and provide new insights into a role of THF1 in plastid gene expression.

Posted on 4 March 2015 | 1:00 am


A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light

Abstract

Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.

Posted on 4 March 2015 | 1:00 am


Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress

Abstract

Experimental evolution is a powerful tool for clarifying phenotypic and genotypic changes responsible for adaptive evolution. In this study, we isolated acid-adapted Synechocystis sp. PCC 6803 (Synechocystis 6803) strains to identify genes involved in acid tolerance. Synechocystis 6803 is rarely found in habitants with pH < 5.75. The parent (P) strain was cultured in BG-11 at pH 6.0. We gradually lowered the pH of the medium from pH 6.0 to pH 5.5 over 3 months. Our adapted cells could grow in acid stress conditions at pH 5.5, whereas the parent cells could not. We performed whole-genome sequencing and compared the acid-adapted and P strains, thereby identifying 11 SNPs in the acid-adapted strains, including in Fo F1-ATPase. To determine whether the SNP genes responded to acid stress, we examined gene expression in the adapted strains using quantitative reverse-transcription polymerase chain reaction. sll0914, sll1496, sll0528, and sll1144 expressions increased under acid stress in the P strain, whereas sll0162, sll0163, slr0623, and slr0529 expressions decreased. There were no differences in the SNP genes expression levels between the P strain and two adapted strains, except for sll0528. These results suggest that SNPs in certain genes are involved in acid stress tolerance in Synechocystis 6803.

Posted on 4 March 2015 | 1:00 am


The arc mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll conductance

Abstract

Photosynthetic cells of most land plant lineages have numerous small chloroplasts even though most algae, and even the early diverging land plant group the hornworts, tend to have one or a few large chloroplasts. One constraint that small chloroplasts could improve is the resistance to CO2 diffusion from the atmosphere to the chloroplast stroma. We examined the mesophyll conductance (inverse of the diffusion resistance) of mutant Arabidopsis thaliana plants with one or only a few large chloroplasts per cell. The accumulation and replication of chloroplasts (arc) mutants of A. thaliana were studied by model fitting to gas exchange data and 13CO2 discrimination during carbon fixation. The two methods generally agreed, but the value of the CO2 compensation point of Rubisco (? *) used in the model had a large impact on the estimated photosynthetic parameters, including mesophyll conductance. We found that having only a few large chloroplasts per cell resulted in a 25–50 % reduction in the mesophyll conductance at ambient CO2.

Posted on 3 March 2015 | 1:00 am


Algal omics: unlocking bioproduct diversity in algae cell factories

Abstract

Rapid advances in “omic” technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems.

Posted on 1 March 2015 | 1:00 am


Engineering cyanobacteria as photosynthetic feedstock factories

Abstract

Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

Posted on 1 March 2015 | 1:00 am


Research and development for algae-based technologies in Korea: a review of algae biofuel production

Abstract

This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea’s energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

Posted on 1 March 2015 | 1:00 am


Engineering photosynthetic organisms for the production of biohydrogen

Abstract

Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in green algae and how those limitations are being addressed, through metabolic and genetic engineering.  We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H2 production. Finally we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.

Posted on 1 March 2015 | 1:00 am


Toward a photosynthetic microbial platform for terpenoid engineering

Abstract

Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted.

Posted on 1 March 2015 | 1:00 am


The place of algae in agriculture: policies for algal biomass production

Abstract

Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

Posted on 1 March 2015 | 1:00 am


Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses

Abstract

Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

Posted on 1 March 2015 | 1:00 am


Low-temperature (77 K) phosphorescence of triplet chlorophyll in isolated reaction centers of photosystem II

Abstract

Phosphorescence characterized by the main emission band at 952 ± 1 nm (1.30 eV), the lifetime of 1.5 ± 0.1 ms and the quantum yield nearly equal to that for monomeric chlorophyll a in aqueous detergent dispersions, has been detected in isolated reaction centers (RCs) of spinach photosystem II at 77 K. The excitation spectrum shows maxima corresponding to absorption bands of chlorophyll a, pheophytin a, and ?-carotene. The phosphorescence intensity strongly depends upon the redox state of RCs. The data suggest that the phosphorescence signal originates from the chlorophyll triplet state populated via charge recombination in the radical pair \({\rm P}_{680}^{+}{\rm Pheo}_{{\rm D}1}^{-}.\)

Posted on 25 February 2015 | 1:00 am


Cyanofuels: biofuels from cyanobacteria. Reality and perspectives

Abstract

Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth’s oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels—biofuels produced from cyanobacterial biomass.

Posted on 22 February 2015 | 1:00 am


Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities

Abstract

Arabidopsis plants grown at low light were exposed to a gradually increasing actinic light routine. This method allows for the discerning of the photoprotective component of NPQ, pNPQ and photoinhibition. They exhibited lower values of Photosystem II (PSII) yield in comparison to high-light grown plants, and higher calculated dark fluorescence level (F?o calc.) than the measured one (F?o act.). As a result, in low-light grown plants, the values of qP measured in the dark appeared higher than 1. Normally, F?o act. and F?o calc. match well at moderate light intensities but F?o act. becomes higher at increasing intensities due to reaction centre (RCII) damage; this indicates the onset of photoinhibition. To explain the unusual increase of qP in the dark in low-light grown plants, we have undertaken an analysis of PSII antenna size using biochemical and spectroscopic approaches. Sucrose gradient separation of thylakoid membrane complexes and fast fluorescence induction experiments illustrated that the relative PSII cross section does not increase appreciably with the rise in PSII antenna size in the low-light grown plants. This suggests that part of the increased LHCII antenna is less efficiently coupled to the RCII. A model based upon the existence of an uncoupled population LHCII is proposed to explain the discrepancies in calculated and measured values of F?o.

Posted on 22 February 2015 | 1:00 am


The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation

Abstract

Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 18 O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides.

Posted on 21 February 2015 | 1:00 am


Replacement of Tyr50 stacked on the si -face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP + oxidoreductase activity toward NADPH

Abstract

Ferredoxin-NAD(P)+ oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group.

Posted on 20 February 2015 | 1:00 am


Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides

Abstract

Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1–2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P?, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P?). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P?) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P? at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH–M160LH–M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from 1B* to 1P? (either directly or indirectly by internal conversion from 1P+) and to the oxidized dimer.

Posted on 20 February 2015 | 1:00 am


How do surrounding environments influence the electronic and vibrational properties of spheroidene?

Abstract

Absorption and Raman spectra of spheroidene dissolved in various organic solvents and bound to peripheral light-harvesting LH2 complexes from photosynthetic purple bacteria Rhodobacter (Rba.) sphaeroides 2.4.1 were measured. The results showed that the peak energies of absorption and C–C and C=C stretching Raman lines are linearly proportional to the polarizability of solvents, as has already been reported. When comparing these results with those measured on LH2 complexes, it was confirmed that spheroidene is surrounded by a media with high polarizability. However, the change in the spectral width of the Raman lines, which reflect vibrational decay time, cannot be explained simply by a similar dependence of solvent polarizability. The experimental results were analyzed using a potential theoretical model. Consequently, a systematic change in the Raman line widths in the ground state can be satisfactorily explained as a function of the viscosity of the surrounding media. Even when the absorption peaks appear at the same energy, the vibrational decay time of spheroidene in the LH2 complexes is approximately 15–20 % slower than that in organic solvents.

Posted on 14 February 2015 | 1:00 am


Induction events and short-term regulation of electron transport in chloroplasts: an overview

Abstract

Regulation of photosynthetic electron transport at different levels of structural and functional organization of photosynthetic apparatus provides efficient performance of oxygenic photosynthesis in plants. This review begins with a brief overview of the chloroplast electron transport chain. Then two noninvasive biophysical methods (measurements of slow induction of chlorophyll a fluorescence and EPR signals of oxidized P700 centers) are exemplified to illustrate the possibility of monitoring induction events in chloroplasts in vivo and in situ. Induction events in chloroplasts are considered and briefly discussed in the context of short-term mechanisms of the following regulatory processes: (i) pH-dependent control of the intersystem electron transport; (ii) the light-induced activation of the Calvin–Benson cycle; (iii) optimization of electron transport due to fitting alternative pathways of electron flow and partitioning light energy between photosystems I and II; and (iv) the light-induced remodeling of photosynthetic apparatus and thylakoid membranes.

Posted on 14 February 2015 | 1:00 am





Other notes:



 Information about this site:


 
The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.
 
To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!
Citation:
http://www.internetchemistry.com/rss/photosynthesis.php
Keywords:
Chronological list of recent articles on Chemistry, Photosynthesis, Photosynthesis Research.
Update:
28.09.2013


Internetchemistry ChemLin © 1996 - 2013 A. J.