Photosynthesis Research

Current research articles.


The journal Photosynthesis Research is an international journal dealing with both basic and applied aspects of photosynthesis. The journal publishes research at all levels of plant organization: molecular, subcellular, cellular, whole plant, canopy, ecosystem and global.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. Magazines with similar content (photosynthesis):

 - Photosynthetica.



Photosynthesis Research - Abstracts



The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA -family genes

Abstract

In the evolution of different cyanobacteria performing oxygenic photosynthesis, the core complexes of the two photosystems were highly conserved. However, cyanobacteria exhibit significant diversification in their light-harvesting complexes and have flexible regulatory mechanisms to acclimate to changes in their growth environments. In the siderophilic, filamentous cyanobacterium, Leptolyngbya sp. strain JSC-1, five different isiA-family genes occur in two gene clusters. During acclimation to Fe limitation, relative transcript levels for more than 600 genes increased more than twofold. Relative transcript levels were ~250 to 300 times higher for the isiA1 gene cluster (isiA1-isiB-isiC), and ~440- to 540-fold for the isiA2-isiA3-isiA4-cpcG2-isiA5 gene cluster after 48 h of iron starvation. Chl-protein complexes were isolated and further purified from cells grown under Fe-replete and Fe-depleted conditions. A single class of particles, trimeric PSI, was identified by image analysis of electron micrographs of negatively stained PSI complexes from Fe-replete cells. However, three major classes of particles were observed for the Chl-protein supercomplexes from cells grown under iron starvation conditions. Based on LC–MS–MS analyses, the five IsiA-family proteins were found in the largest supercomplexes together with core components of the two photosystems; however, IsiA5 was not present in complexes in which only the core subunits of PSI were detected. IsiA5 belongs to the same clade as PcbC proteins in a phylogenetic classification, and it is proposed that IsiA5 is most likely involved in supercomplexes containing PSII dimers. IsiA4, which is a fusion of an IsiA domain and a C-terminal PsaL domain, was found together with IsiA1, IsiA2, and IsiA3 in complexes with monomeric PSI. The data indicate that horizontal gene transfer, gene duplication, and divergence have played important roles in the adaptive evolution of this cyanobacterium to iron starvation conditions.


Datum: 01.06.2016


Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum

Abstract

Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome.


Datum: 01.06.2016


Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back

Abstract

The engagement of different photoprotective mechanisms in the cells of the carotenogenic astaxanthin-accumulating chlorophyte Haematococcus pluvialis (i) under favorable conditions, (ii) in the course of stress-induced haematocyst formation and (iii) during recovery from the stress was studied. To this end, we followed the changes in primary photochemistry, electron flow at the acceptor side of photosystem II, and non-photochemical quenching (NPQ) using PAM chlorophyll fluorimetry. A general trend recorded in the stressed cells undergoing transition to haematocysts (and reversed during recovery from the stress) was a gradual reduction of the photosynthetic apparatus accompanied by down-regulation of energy-dependent photoprotective mechanisms such as NPQ, along with the accumulation of astaxanthin. On this background, a transient up-regulation of the photosynthetic activity was detected at the intermediated stages (20–50 h of the stress exposure) of haematocyst formation. This phenomenon was tentatively related with the peak of metabolic activity found earlier in the forming haematocysts. The role of secondary carotenogenesis coupled with a reversible transition from ‘active’ (energy-dependent) to ‘passive’ photoprotective mechanisms in the extremely high stress tolerance of carotenogenic phototrophs is discussed.


Datum: 01.06.2016


Weak temperature dependence of P + H A − recombination in mutant Rhodobacter sphaeroides reaction centers

Abstract

In contrast with findings on the wild-type Rhodobacter sphaeroides reaction center, biexponential P + H A  → PH A charge recombination is shown to be weakly dependent on temperature between 78 and 298 K in three variants with single amino acids exchanged in the vicinity of primary electron acceptors. These mutated reaction centers have diverse overall kinetics of charge recombination, spanning an average lifetime from ~2 to ~20 ns. Despite these differences a protein relaxation model applied previously to wild-type reaction centers was successfully used to relate the observed kinetics to the temporal evolution of the free energy level of the state P + H A relative to P + B A . We conclude that the observed variety in the kinetics of charge recombination, together with their weak temperature dependence, is caused by a combination of factors that are each affected to a different extent by the point mutations in a particular mutant complex. These are as follows: (1) the initial free energy gap between the states P + B A and P + H A , (2) the intrinsic rate of P + B A  → PB A charge recombination, and (3) the rate of protein relaxation in response to the appearance of the charge separated states. In the case of a mutant which displays rapid P + H A recombination (ELL), most of this recombination occurs in an unrelaxed protein in which P + B A and P + H A are almost isoenergetic. In contrast, in a mutant in which P + H A recombination is relatively slow (GML), most of the recombination occurs in a relaxed protein in which P + H A is much lower in energy than P + H A . The weak temperature dependence in the ELL reaction center and a YLH mutant was modeled in two ways: (1) by assuming that the initial P + B A and P + H A states in an unrelaxed protein are isoenergetic, whereas the final free energy gap between these states following the protein relaxation is large (~250 meV or more), independent of temperature and (2) by assuming that the initial and final free energy gaps between P + B A and P + H A are moderate and temperature dependent. In the case of the GML mutant, it was concluded that the free energy gap between P + B A and P + H A is large at all times.


Datum: 01.06.2016


Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis

Abstract

Global transcriptome analyses were used to assess the interactive effects of short-term stress versus long-term acclimation to high light (HL), low temperature (LT) and excitation pressure in Arabidopsis. Microarray analyses indicated that exposure to stress resulted in two times as many modulated transcripts in both, high-light-treated and low-temperature-treated plants, compared to plants that were fully acclimated to either one of these conditions. We showed that 10.9 % of all transcripts were regulated in the same way by both stress conditions, and hence, were categorized as excitation pressure regulated, rather than regulated by either high-light or low-temperature stress per se. This group of chloroplast redox-sensitive genes included various photosynthetic genes as well as genes known to be associated with cold acclimation (cbf3, cor15A, cor15B) and gibberellic acid (GA) metabolism and signalling (ga2ox1, gai). Chemical inhibition of the photosynthetic electron transport by either DCMU or DBMIB indicated that although the plastoquinone pool contributes significantly to redox regulation of the transcriptome (8.6 %), it appears that PSI represents the major source of redox signals (89 %), whereas PSII appears to contribute only 3.1 %. A comparison of the gene expression profiles between stress and acclimated plants indicated that 10 % of the genes induced by a short, 1-h stress were also associated with long-term acclimation to high excitation pressure. This included the APETALA2/ETHYLENE-RESPONSIVE-BINDING PROTEIN family, the MYB domain- and MYB-related transcription factor family as well as the GRAS transcription factor family important in GA signalling confirming that acclimation to stress is a time-nested phenomenon. We suggest that acclimation to photosynthetic redox imbalance extends beyond the chloroplast and the leaf cell to systemic ROS signalling. This is discussed in terms of the control of plant phenotype through regulation of the nuclear encoded cbf regulon and GA metabolism.


Datum: 01.06.2016


The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis : further insight into the nature of the P–S–M fluctuation and its relationship with the “low-wave” phenomenon at steady-state

Abstract

Chlorophyll fluorescence is an information-rich signal which provides an access to the management of light absorbed by PSII. A good example of this is the succession of fast fluorescence fluctuations during light-induced photosynthetic induction after dark-adaptation. During this period, the fluorescence trace exhibits several inflexion points: O–J–I–P–S–M–T. Whereas the OJIP part of this kinetics has been the subject of many studies, the processes that underly the PSMT transient are less understood. Here, we report an analysis of the PSMT phase in the green microalga Haematococcus pluvialis in terms of electron acceptors and light use by photochemistry, fluorescence and non-photochemical quenching (NPQ). We identify additional sub-phases between P and S delimited by an inflexion point, that we name Q, found in the second time scale. The P–Q phase expresses a transient photochemical quenching specifically due to alternative electron transport to oxygen. During the transition from Q to S, the NPQ increases and then relaxes during the S–M phase in about 1 min. It is suggested that this transient NPQ observed during induction is a high energy state quenching (qE) dependent on the alternative electron transport to molecular oxygen. We further show that this NPQ is of the same nature than the NPQ, known as the low-wave phenomenon, which is transiently observed after a saturating light pulse given at steady-state. In both cases, the NPQ is oxygen-dependent. This NPQ is observed at external pH 6.0, but not at pH 7.5, which seems correlated with faster saturation of the PQ pool at pH 6.0.


Datum: 01.06.2016


Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis , Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta)

Abstract

There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L−1) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P < 0.05) and followed the same pattern in the three species. The parameter values were promoted in lower NaHCO3 concentrations (up to 252 or 336 mg L−1) and inhibited in higher NaHCO3 concentrations (>336 mg L−1 for Gp. lemaneiformis and >420 mg L−1 for the other two species). Moreover, species–specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L−1 for Gp. lemaneiformis and 336 mg L−1 for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.


Datum: 01.06.2016


Jalal A. Aliyev (1928–2016): a great scientist, a great teacher and a great human being

Abstract

Jalal A. Aliyev was a distinguished and respected plant biologist of our time, a great teacher, and great human being. He was a pioneer of photosynthesis research in Azerbaijan. Almost up to the end of his life, he was deeply engaged in research. His work on the productivity of wheat, and biochemistry, genetics and molecular biology of gram (chick pea) are some of his important legacies. He left us on February 1, 2016, but many around the world remember him as he was engaged in international dialog on solving global issues, and in supporting international conferences on ‘‘Photosynthesis Research for Sustainability” in 2011 and 2013.


Datum: 01.06.2016


Louis Nico Marie Duysens (March 15, 1921–September 8, 2015): a leading biophysicist of the 20th century

Abstract

Louis Nico Marie (L. N. M.) Duijsens (Duysens) was one of the giants in the biophysics of photosynthesis. His PhD thesis “Transfer of Excitation Energy in Photosynthesis” (Duysens, 1952) is a classic; he introduced light-induced absorption difference spectroscopy to photosynthesis research and proved the existence of reaction centers, introducing advanced methods from physics to understand biological processes. Further, it is his 1959–1961 seminal work, with Jan Amesz, that provided evidence for the existence of the series scheme for the two light reactions in oxygenic photosynthesis. In one word, he was one of the master biophysicists of the 20th century—who provided direct measurements on many key intermediates, and made us understand the intricacies of photosynthesis with a simplicity that no one else ever did. We present here our personal perspective of the scientist that Lou Duysens was. For an earlier perspective, see van Grondelle and van Gorkom (Photosynth Res 120: 3–7, 2014).


Datum: 01.06.2016


A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis

Abstract

Steady-state rates of leaf CO2 assimilation (A) in response to incubation temperature (T) are often symmetrical around an optimum temperature. A/T curves of C3 plants can thus be fitted to a modified Arrhenius equation, where the activation energy of A close to a low reference temperature is strongly correlated with the dynamic change of activation energy to increasing incubation temperature. We tested how [CO2] < current atmospheric levels and saturating light, or [CO2] at 800 µmol mol−1 and variable light affect parameters that describe A/T curves, and how these parameters are related to known properties of temperature-dependent thylakoid electron transport. Variation of light intensity and substomatal [CO2] had no influence on the symmetry of A/T curves, but significantly affected their breadth. Thermodynamic and kinetic (physiological) factors responsible for (i) the curvature in Arrhenius plots and (ii) the correlation between parameters of a modified Arrhenius equation are discussed. We argue that the shape of A/T curves cannot satisfactorily be explained via classical concepts assuming temperature-dependent shifts between rate-limiting processes. Instead the present results indicate that any given A/T curve appears to reflect a distinct flux mode, set by the balance between linear and cyclic electron transport, and emerging from the anabolic demand for ATP relative to that for NADPH.


Datum: 24.05.2016


Theoretical study of the EPR spectrum of the S 3 TyrZ • metalloradical intermediate state of the O 2 -evolving complex of photosystem II

Abstract

The intermediates trapped during the transitions between the consecutive S-states of the oxygen-evolving complex (OEC) of photosystem II (PSII) contain the free radical TyrZ interacting magnetically with the Mn-cluster (Mn4Ca). In this paper, we present a theoretical study of the EPR spectrum of the S3TyrZ metalloradical intermediate state, which has been recently detected in MeOH-containing PSII preparations. For this analysis, we use two different approximations: the first, simpler one, is the point-dipole approach, where the two interacting spins are the S = 1/2 of TyrZ and the ground spin state of S = 3 of the OEC being in the S3 state. The second approximation is based on previous proposals indicating that the ground spin state (S G = 3) of the S3 state arises from an antiferromagnetic exchange coupling between the S = 9/2 of the Mn(IV)3CaO4 and the S = 3/2 of the external Mn(IV) of the OEC. Under the above assumption, the second approximation involves three interacting spins, denoted S A(Mn(IV)3Ca) = 9/2, S B(Mn(IV)) = 3/2 and S C(TyrZ) = 1/2. Accordingly, the tyrosine radical is exposed to dipolar interactions with both fragments of the OEC, while an antiferromagnetic exchange coupling within the “3 + 1” structural motif of the OEC is also considered. By application of the first-point-dipole approach, the inter-spin distance that simulates the experimental spectrum is not consistent with the theoretical models that were recently reported for the OEC in the S3 state. Instead, the recent models are consistent with the results of the analysis that is performed by using the second, more detailed, approach.


Datum: 11.05.2016


β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis sp. PCC 6803

Abstract

We investigated the relation between the carotenoid composition and the structure of phycobilisome (PBS) antenna of cyanobacterium Synechocystis sp. PCC 6803. PBS is a large soluble protein complex enhances the light harvesting efficiency of the cells. It is composed of a central allophycocyanin core and radial phycocyanin rods, but it does not contain carotenoids. However, the absence or low level of carotenoids were previously shown to lead the co-existence of unconnected rod units and assembled PBS with shorter peripheral rods. Here we show that the lack of β-carotene, but not of xanthophylls or the distortion of photosystem structure, evoked unconnected rods. Thus, these essential β-carotene molecules are not bound by Photosystem I or Photosystem II. Our results do not show correlation between the reactive oxygen species (ROS) and PBS distortion despite the higher singlet oxygen producing capacity and light sensitivity of the mutant cells. Reduced cellular level of those linker proteins attaching the rod units together was also observed, but the direct damage of the linkers by ROS are not supported by our data. Enzymatic PBS proteolysis induced by nitrogen starvation in carotenoid mutant cells revealed a retarded degradation of the unconnected rod units.


Datum: 10.05.2016


Analysis of gene expression and histone modification between C 4 and non-C 4 homologous genes of PPDK and PCK in maize

Abstract

More efficient photosynthesis has allowed C4 plants to adapt to more diverse ecosystems (such as hot and arid conditions) than C3 plants. To better understand C4 photosynthesis, we investigated the expression patterns of C4 genes (C4PPDK and PCK1) and their non-C4 homologous genes (CyPPDK1, CyPPDK2, and PCK2) in the different organs of maize (Zea mays). Both C4 genes and non-C4 genes showed organ-dependent expression patterns. The mRNA levels of C4 genes were more abundant in leaf organ than in seeds at 25 days after pollination (DAP), while non-C4 genes were mainly expressed in developing seeds. Further, acetylation of histone H3 lysine 9 (H3K9ac) positively correlates with mRNA levels of C4 genes (C4PPDK and PCK1) in roots, stems, leaves, and seeds at 25 DAP, acetylation of histone H4 lysine 5 (H4K5ac) in the promoter regions of both C4 (C4PPDK and PCK1) and non-C4 genes (CyPPDK1, CyPPDK2, and PCK2) correlated well with their transcripts abundance in stems. In photosynthetic organs (stems and leaves), dimethylation of histone H3 lysine 9 (H3K9me2) negatively correlated with mRNA levels of both C4 and non-C4 genes. Taken together, our data suggest that histone modification was involved in the transcription regulation of both C4 genes and non-C4 genes, which might provide a clue of the functional evolution of C4 genes.


Datum: 09.05.2016


A comparative study of three signaling forms of the orange carotenoid protein

Abstract

Orange carotenoid protein (OCP) is a water-soluble photoactive protein responsible for a photoprotective mechanism of nonphotochemical quenching in cyanobacteria. Under blue–green illumination, OCP converts from the stable orange into the signaling red quenching form; however, the latter form could also be obtained by chemical activation with high concentrations of sodium thiocyanate (NaSCN) or point mutations. In this work, we show that a single replacement of tryptophan-288, normally involved in protein-chromophore interactions, by alanine, results in formation of a new protein form, hereinafter referred to as purple carotenoid protein (PCP). Comparison of resonance Raman spectra of the native photoactivated red form, chemically activated OCP, and PCP reveals that carotenoid conformation is sensitive to the structure of the C-domain, implicating that the chromophore retains some interactions with this part of the protein in the active red form. Combination of differential scanning fluorimetry and picosecond time-resolved fluorescence anisotropy measurements allowed us to compare the stability of different OCP forms and to estimate relative differences in protein rotation rates. These results were corroborated by hydrodynamic analysis of proteins by dynamic light scattering and analytical size-exclusion chromatography, indicating that the light-induced conversion of the protein is accompanied by a significant increase in its size. On the whole, our data support the idea that the red form of OCP is a molten globule-like protein in which, however, interactions between the carotenoid and the C-terminal domain are preserved.


Datum: 09.05.2016


Enhanced thermal stability of the thylakoid membranes from spruce. A comparison with selected angiosperms

Abstract

Recently, we have found that thermal stability of photosystem II (PSII) photochemistry in spruce needles is higher than in other plants (barley, beech) cultivated under the same temperatures. In this work, temperature dependences of various characteristics of PSII organization were studied in order to obtain complex information on the thermal stability of PSII function and organization in spruce. Temperature dependency of circular dichroism spectra revealed by about 6 °C higher thermal stability of macrodomain organization in spruce thylakoid membranes in comparison with Arabidopsis and barley ones; however, thermal disintegration of light-harvesting complex of PSII did not significantly differ among the species studied. These results thus indicate that thermal stability of PSII macro-organization in spruce thylakoid membranes is enhanced to a similar extent as thermal stability of PSII photochemistry. Clear-native polyacrylamide gel electrophoresis of preheated thylakoids demonstrated that among the separated pigment–protein complexes, only PSII supercomplexes (SCs) revealed considerably higher thermal stability in spruce thylakoids as compared to Arabidopsis and barley ones. Hence we suggest that higher thermal stability of PSII macro-organization of spruce is influenced by the maintenance of PSII SCs in the thylakoid membrane. In addition, we discuss possible effects of different PSII organizations and lipid compositions on the thermal stability of spruce thylakoid membranes.


Datum: 06.05.2016


Electrical signals as mechanism of photosynthesis regulation in plants

Abstract

This review summarizes current works concerning the effects of electrical signals (ESs) on photosynthesis, the mechanisms of the effects, and its physiological role in plants. Local irritations of plants induce various photosynthetic responses in intact leaves, including fast and long-term inactivation of photosynthesis, and its activation. Irritation-induced ESs, including action potential, variation potential, and system potential, probably causes the photosynthetic responses in intact leaves. Probable mechanisms of induction of fast inactivation of photosynthesis are associated with Ca2+- and (or) H+-influxes during ESs generation; long-term inactivation of photosynthesis might be caused by Ca2+- and (or) H+-influxes, production of abscisic and jasmonic acids, and inactivation of phloem H+-sucrose symporters. It is probable that subsequent development of inactivation of photosynthesis is mainly associated with decreased CO2 influx and inactivation of the photosynthetic dark reactions, which induces decreased photochemical quantum yields of photosystems I and II and increased non-photochemical quenching of photosystem II fluorescence and cyclic electron flow around photosystem I. However, other pathways of the ESs influence on the photosynthetic light reactions are also possible. One of them might be associated with ES-connected acidification of chloroplast stroma inducing ferredoxin-NADP+ reductase accumulation at the thylakoids in Tic62 and TROL complexes. Mechanisms of ES-induced activation of photosynthesis require further investigation. The probable ultimate effect of ES-induced photosynthetic responses in plant life is the increased photosynthetic machinery resistance to stressors, including high and low temperatures, and enhanced whole-plant resistance to environmental factors at least during 1 h after irritation.


Datum: 06.05.2016


The carbon (formerly dark) reactions of photosynthesis

Abstract

In this brief account, I describe the background for dividing photosynthesis into “light” and “dark” reactions and show how this concept changed to “light” and “carbon” reactions as science in the field advanced.


Datum: 01.05.2016


Vallabhaneni Sita Rama Das, 1933–2010: teacher and mentor

Abstract

We present here the life and research of V. S. Rama Das, a distinguished Indian botanist who specialized in photosynthesis. He was the first to purify chloroplasts that were free of mitochondrial contamination. He then studied C4, C3–C4 intermediate and CAM pathways, as well as their taxonomic distribution in tropical climates. His most valuable legacy is that he, as a philosopher, inspired and guided many students to pursue their research career in India. Also see Narayana and Pullaiah (Eminent Indian Botanists: Past and present: Biographies and contributions, pp 394–401, 2010) and Raghavendra and Reddy (Curr Sci 101:798–799, 2011) for further information on Rama Das.


Datum: 01.05.2016


Hartmut Lichtenthaler: an authority on chloroplast structure and isoprenoid biochemistry

Abstract

We pay tribute to Hartmut Lichtenthaler for making important contributions to the field of photosynthesis research. He was recently recognized for ground-breaking discoveries in chloroplast structure and isoprenoid biochemistry by the Rebeiz Foundation for Basic Research (RFBR; http://vlpbp.org/), receiving a 2014 Lifetime Achievement Award for Photosynthesis. The ceremony, held in Champaign, Illinois, was attended by many prominent researchers in the photosynthesis field. We provide below a brief note on his education, and then describe some of the areas in which Hartmut Lichtenthaler has been a pioneer.


Datum: 01.05.2016


The effect of medium viscosity on kinetics of ATP hydrolysis by the chloroplast coupling factor CF 1

Abstract

The coupling factor CF1 is a catalytic part of chloroplast ATP synthase which is exposed to stroma whose viscosity is many-fold higher than that of reaction mixtures commonly used to measure kinetics of CF1-catalyzed ATP hydrolysis. This study is focused on the effect of medium viscosity modulated by sucrose or bovine serum albumin (BSA) on kinetics of Ca2+- and Mg2+-dependent ATP hydrolysis by CF1. These agents were shown to reduce the maximal rate of Ca2+-dependent ATPase without changing the apparent Michaelis constant (К m), thus supporting the hypothesis on viscosity dependence of CF1 activity. For the sulfite- and ethanol-stimulated Mg2+-dependent reaction, the presence of sucrose increased К m without changing the maximal rate that is many-fold as high as that of Ca2+-dependent hydrolysis. The hydrolysis reaction was shown to be stimulated by low concentrations of BSA and inhibited by its higher concentrations, with the increasing maximal reaction rate estimated by extrapolation. Sucrose- or BSA-induced inhibition of the Mg2+-dependent ATPase reaction is believed to result from diffusion-caused deceleration, while its BSA-induced stimulation is probably caused by optimization of the enzyme structure. Molecular mechanisms of the inhibitory effect of viscosity are discussed. Taking into account high protein concentrations in the chloroplast stroma, it was suggested that kinetic parameters of ATP hydrolysis, and probably those of ATP synthesis in vivo as well, must be quite different from measurements taken at a viscosity level close to that of water.


Datum: 01.05.2016






Information about this site:

Last update: 27.01.2016

The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.

To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!

Topic: Current, research, scientific, photosynthesis, chemistry, function, articles, Journal.




(C) 1996 - 2016 Internetchemistry













Current Chemistry Job Vacancies:

[more job vacancies]