Photosynthesis Research

Current research articles.


The journal Photosynthesis Research is an international journal dealing with both basic and applied aspects of photosynthesis. The journal publishes research at all levels of plant organization: molecular, subcellular, cellular, whole plant, canopy, ecosystem and global.

The publisher is Springer. The copyright and publishing rights of specialized products listed below are in this publishing house. This is also responsible for the content shown.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!

Additional research articles see Current Chemistry Research Articles. Magazines with similar content (photosynthesis):

 - Photosynthetica.



Photosynthesis Research - Abstracts



The effects of CO 2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans

Abstract

In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2–nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.


Datum: 01.08.2016


Cyanobacterial ultrastructure in light of genomic sequence data

Abstract

Cyanobacteria are physiologically and morphologically diverse photosynthetic microbes that play major roles in the carbon and nitrogen cycles of the biosphere. Recently, they have gained attention as potential platforms for the production of biofuels and other renewable chemicals. Many cyanobacteria were characterized morphologically prior to the advent of genome sequencing. Here, we catalog cyanobacterial ultrastructure within the context of genomic sequence information, including high-magnification transmission electron micrographs that represent the diversity in cyanobacterial morphology. We place the image data in the context of tabulated protein domains—which are the structural, functional, and evolutionary units of proteins—from the 126 cyanobacterial genomes comprising the CyanoGEBA dataset. In particular, we identify the correspondence between ultrastructure and the occurrence of genes encoding protein domains related to the formation of cyanobacterial inclusions. This compilation of images and genome-level domain occurrence will prove useful for a variety of analyses of cyanobacterial sequence data and provides a guidebook to morphological features.


Datum: 01.08.2016


Mechanisms that increase the growth efficiency of diatoms in low light

Abstract

Photoacclimation was studied in Thalassiosira pseudonana to help understand mechanisms underlying the success of diatoms in low-light environments, such as coastal and deep mixing ecosystems. Light harvesting and other cell characteristics were combined with oxygen and carbon production measurements to assess the water-splitting reaction at PSII ( \({\text{GPP}}_{{{\text{O}}_{2} }}\) ) and intermediate steps leading to net carbon production (NPPC). These measurements revealed that T. pseudonana is remarkably efficient at converting harvested light energy into biomass, with at least 57 % of \({\text{GPP}}_{{{\text{O}}_{2} }}\) retained as NPPC across all light-limited growth rates examined. Evidence for upregulation of ATP generation pathways that circumvent carbon fixation indicated that high growth efficiency at low light levels was at least partly due to increases in the efficiency of ATP production. Growth rate-dependent demands for ATP and NADPH were reflected in carbon composition and in unexpected shifts in the light-limited slope (α) of photosynthesis–irradiance relationships generated from chlorophyll-specific 14C-uptake. Overall, these results suggest that pathway gating of carbon and energy flow depends on light availability and is a key factor promoting the efficiency of diatom growth at low light intensities.


Datum: 01.08.2016


Gernot Renger (1937–2013): his life, Max-Volmer Laboratory, and photosynthesis research

Abstract

Gernot Renger (October 23, 1937–January 12, 2013), one of the leading biophysicists in the field of photosynthesis research, studied and worked at the Max-Volmer-Institute (MVI) of the Technische Universität Berlin, Germany, for more than 50 years, and thus witnessed the rise and decline of photosynthesis research at this institute, which at its prime was one of the leading centers in this field. We present a tribute to Gernot Renger’s work and life in the context of the history of photosynthesis research of that period, with special focus on the MVI. Gernot will be remembered for his thought-provoking questions and his boundless enthusiasm for science.


Datum: 01.08.2016


Bacteriopheophytin triplet state in Rhodobacter sphaeroides reaction centers

Abstract

It is well established that photoexcitation of Rhodobacter sphaeroides reaction centers (RC) with reduced quinone acceptors results in the formation of a triplet state localized on the primary electron donor P with a significant yield. The energy of this long-lived and therefore potentially damaging excited state is then efficiently quenched by energy transfer to the RC spheroidenone carotenoid, with its subsequent decay to the ground state by intersystem crossing. In this contribution, we present a detailed transient absorption study of triplet states in a set of mutated RCs characterized by different efficiencies of triplet formation that correlate with lifetimes of the initial charge-separated state P+H A . On a microsecond time scale, two types of triplet state were detected: in addition to the well-known spheroidenone triplet state with a lifetime of ~4 μs, in some RCs we discovered a bacteriopheophytin triplet state with a lifetime of ~40 μs. As expected, the yield of the carotenoid triplet increased approximately linearly with the lifetime of P+H A , reaching the value of 42 % for one of the mutants. However, surprisingly, the yield of the bacteriopheophytin triplet was the highest in RCs with the shortest P+H A lifetime and the smallest yield of carotenoid triplet. For these the estimated yield of bacteriopheophytin triplet was comparable with the yield of the carotenoid triplet, reaching a value of ~7 %. Possible mechanisms of formation of the bacteriopheophytin triplet state are discussed.


Datum: 01.08.2016


Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark

Abstract

In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.


Datum: 01.08.2016


Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410

Abstract

Acaryochloris species are a genus of cyanobacteria that utilize chlorophyll (chl) d as their primary chlorophyll molecule during oxygenic photosynthesis. Chl d allows Acaryochloris to harvest red-shifted light, which gives them the ability to live in filtered light environments that are depleted in visible light. Although genomes of multiple Acaryochloris species have been sequenced, their analysis has not revealed how chl d is synthesized. Here, we demonstrate that Acaryochloris sp. CCMEE 5410 cells undergo chlorosis by nitrogen depletion and exhibit robust regeneration of chl d by nitrogen repletion. We performed a time course RNA-Seq experiment to quantify global transcriptomic changes during chlorophyll recovery. We observed upregulation of numerous known chl biosynthesis genes and also identified an oxygenase gene with a similar transcriptional profile as these chl biosynthesis genes, suggesting its possible involvement in chl d biosynthesis. Moreover, our data suggest that multiple prochlorophyte chlorophyll-binding homologs are important during chlorophyll recovery, and light-independent chl synthesis genes are more dominant than the light-dependent gene at the transcription level. Transcriptomic characterization of this organism provides crucial clues toward mechanistic elucidation of chl d biosynthesis.


Datum: 01.08.2016


A polymorphism in the oxygen-responsive repressor PpsR2 confers a growth advantage to Rhodopseudomonas palustris under low light

Abstract

The purple nonsulfur bacterium Rhodopseudomonas palustris grows aerobically using oxidative phosphorylation or anaerobically using photophosphorylation. The oxygen-responsive transcription regulator, PpsR2, regulates the transition to a phototrophic lifestyle by repressing transcription of photosynthesis genes during aerobic growth. Whereas most R. palustris strains have an arginine (Arg) at position 439 in the helix-turn-helix DNA-binding domain of this protein, some strains, including the well-studied strain CGA009, have a cysteine (Cys) at this position. Using allelic exchange, we found that the Cys439 in PpsR2 resulted in increased pigmentation and photosynthetic gene expression under both aerobic and anaerobic conditions. The Cys439 substitution also conferred a growth advantage to R. palustris at low light intensities. This indicates that variation in the PpsR2 protein results in R. palustris strains that have two different thresholds for derepressing photosynthesis genes in response to oxygen and light.


Datum: 01.08.2016


Remembering Joan (Jan) Mary Anderson (1932–2015)

Abstract

Joan Mary Anderson, known to most people as Jan, was born on May 12, 1932 in Dunedin, New Zealand. She died on August 28, 2015 in Canberra, Australia. To celebrate her life, we present here a brief biography, some comments on her discoveries in photosynthesis during a career spanning more than half a century, and reminiscences from family and friends. We remember this wonderful person who had an unflagging curiosity, creative ability to think laterally, enthusiasm, passion, generosity and love of color and culture.


Datum: 01.08.2016


Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan

Abstract

Salt-tolerant grasses of warm sub-tropical ecosystems differ in their distribution patterns with respect to salinity and moisture regimes. Experiments were conducted on CO2 fixation and light harvesting processes of four halophytic C4 grasses grown under different levels of salinity (0, 200 and 400 mM NaCl) under ambient environmental conditions. Two species were from a high saline coastal marsh (Aeluropus lagopoides and Sporobolus tremulus) and two were from a moderate saline sub-coastal draw-down tidal marsh (Paspalum paspalodes and Paspalidium geminatum). Analyses of the carbon isotope ratios of leaf biomass in plants indicated that carbon assimilation was occurring by C4 photosynthesis in all species during growth under varying levels of salinity. In the coastal species, with increasing salinity, there was a parallel decrease in rates of CO2 fixation (A), transpiration (E) and stomatal conductance (g s), with no effect on water use efficiency (WUE). These species were adapted for photoprotection by an increase in the Mehler reaction with an increase in activity of PSII/CO2 fixed accompanied by high levels of antioxidant enzymes, superoxide dismutase and ascorbate peroxidase. The sub-coastal species P. paspalodes and P. geminatum had high levels of carotenoid pigments and non-photochemical quenching by the xanthophyll cycle.


Datum: 23.07.2016


Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana

Abstract

Nannochloropsis is an eukaryotic alga of the phylum Heterokonta, originating from a secondary endosymbiotic event. In this work, we investigated how the photosynthetic apparatus responds to growth in different light regimes in Nannochloropsis gaditana. We found that intense illumination induces the decrease of both photosystem I and II contents and their respective antenna sizes. Cells grown in high light showed a larger capacity for electron transport, with enhanced cyclic electron transport around photosystem I, contributing to photoprotection from excess illumination. Even when exposed to excess light intensities for several days, N. gaditana cells did not activate constitutive responses such as nonphotochemical quenching and the xanthophyll cycle. These photoprotection mechanisms in N. gaditana thus play a role in acclimation to fast changes in illumination within a time range of minutes, while regulation of the electron flow capacity represents a long-term response to prolonged exposure to excess light.


Datum: 22.07.2016


Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions

Abstract

Light and temperature affect state transitions through changes in the plastoquinone (PQ) redox state in photosynthetic organisms. We demonstrated that light and/or heat treatment induced preferential photosystem (PS) I excitation by binding light-harvesting complex II (LHCII) proteins. The photosystem of wheat was in state 1 after dark overnight treatment, wherein PQ was oxidized and most of LHCII was not bound to PSI. At the onset of the light treatment [25 °C in the light (100 µmol photons m−2 s−1)], two major LHCIIs, Lhcb1 and Lhcb2 were phosphorylated, and the PSI–LHCII supercomplex formed within 5 min, which coincided with an increase in the PQ oxidation rate. Heat treatment at 40 °C of light-adapted wheat led to further LHCII protein phosphorylation of, resultant cyclic electron flow promotion, which was accompanied by ultrafast excitation of PSI and structural changes of thylakoid membranes, thereby protecting PSII from heat damage. These results suggest that LHCIIs are required for the functionality of wheat plant PSI, as it keeps PQ oxidized by regulating photochemical electron flow, thereby helping acclimation to environmental changes.


Datum: 18.07.2016


Metabolism of xenobiotics by Chlamydomonas reinhardtii : Phenol degradation under conditions affecting photosynthesis

Abstract

In the present work, the biodegradation of phenol by axenic cultures of the unicellular microalga Chlamydomonas reinhardtii was investigated. Biodegradation proved to be a dynamic bioenergetic process, affected by changes in the culture conditions. Microalgae biodegraded defined amounts of phenol, as a result of the induced stress caused at high concentrations, despite the fact that this process proved to be energy demanding and thus affected growth of the culture. High levels of biodegradation were observed both in the absence of an alternative carbon source and in the presence of acetate as a carbon source. Biodegradation of phenol by Chlamydomonas proved to be an aerobic, photoregulated process. This is the first time that Chlamydomonas reinhardtii has been used for bioremediation purposes. This study has demonstrated that the most important factor in the biodegradation of phenol is the selection of the appropriate culture conditions (presence or absence of alternative carbon source, light intensity, and oxygen availability) that provide the best bioenergetic balance among growth, induced stress, and biodegradation of phenol.


Datum: 15.07.2016


Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial ( Synechocystis ) isoprene production

Abstract

Heterologous production of isoprene (C5H8) hydrocarbons in cyanobacteria, emanating from sunlight, CO2, and water, is now attracting increasing attention. The concept entails application of an isoprene synthase transgene from terrestrial plants, heterologously expressed in cyanobacteria, aiming to reprogram carbon flux in the terpenoid biosynthetic pathway toward formation and spontaneous release of this volatile chemical from the cell and liquid culture. However, flux manipulations and carbon-partitioning reactions between isoprene (the product) and native terpenoid biosynthesis for cellular needs are not yet optimized for isoprene yield. The primary reactant for isoprene biosynthesis is dimethylallyl diphosphate (DMAPP), whereas both DMAPP and its isopentenyl diphosphate (IPP) isomer are needed for cellular terpenoid biosynthesis. The present work addressed the function of an isopentenyl diphosphate (IPP) isomerase in cyanobacteria and its role in carbon partitioning between IPP and DMAPP, both of which serve, in variable ratios, as reactants for the synthesis of different cellular terpenoids. The work was approached upon the heterologous expression in Synechocystis of the “isopentenyl diphosphate isomerase” gene (FNI) from Streptococcus pneumoniae, using isoprene production as a “reporter process” for substrate partitioning between DMAPP and IPP. It is shown that transgenic expression of the FNI gene in Synechocystis resulted in a 250 % increase in the “reporter isoprene” rate and yield, suggesting that the FNI isomerase shifted the endogenous DMAPP-IPP steady-state pool size toward DMAPP, thereby enhancing rates and yield of isoprene production. The work provides insight into the significance and functional role of the IPP isomerase in these photosynthetic microorganisms.


Datum: 13.07.2016


The plastoquinol–plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations

Abstract

In the photosystem II (PSII) of oxygenic photosynthetic organisms, the reaction center (RC) core mediates the light-induced electron transfer leading to water splitting and production of reduced plastoquinone molecules. The reduction of plastoquinone to plastoquinol lowers PSII affinity for the latter and leads to its release. However, little is known about the role of protein dynamics in this process. Here, molecular dynamics simulations of the complete PSII complex embedded in a lipid bilayer have been used to investigate the plastoquinol release mechanism. A distinct dynamic behavior of PSII in the presence of plastoquinol is observed which, coupled to changes in charge distribution and electrostatic interactions, causes disruption of the interactions seen in the PSII–plastoquinone complex and leads to the “squeezing out” of plastoquinol from the binding pocket. Displacement of plastoquinol closes the second water channel, recently described in a 2.9 Å resolution PSII structure (Guskov et al. in Nat Struct Mol Biol 16:334–342, 2009), allowing to rule out the proposed “alternating” mechanism of plastoquinol–plastoquinone exchange, while giving support to the “single-channel” one. The performed simulations indicated a pivotal role of D1-Ser264 in modulating the dynamics of the plastoquinone binding pocket and plastoquinol–plastoquinone exchange via its interaction with D1-His252 residue. The effects of the disruption of this hydrogen bond network on the PSII redox reactions were experimentally assessed in the D1 site-directed mutant Ser264Lys.


Datum: 04.07.2016


PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra

Abstract

Although it has been believed that wild-type plants are capable of protecting photosystem I (PSI) under high light, our previous study indicates that PSI is sensitive to high light in the shade-established tree species Psychotria rubra. However, the underlying physiological mechanisms are unclear. In this study, we examined the roles of electron transfer from PSII to PSI and PSI redox state in PSI photoinhibition in P. rubra by treatments with lincomycin (Lin), diuron (DCMU), and methyl viologen (MV). After exposure to 2000 μmol photons m−2 s−1 for 2 h, PSI activity decreased by 35, 29, 3, and 49 % in samples treated with H2O, Lin, DCMU, and MV, respectively. Meanwhile, the MV-treated samples showed higher P700 oxidation ratio than the H2O-treated samples, suggesting the PSI photoinhibition under high light was accompanied by high levels of P700 oxidation ratio. PSI photoinhibition was alleviated in the DCMU-treated samples but was accelerated in the MV-treated samples, suggesting that PSI photoinhibition in P. rubra was mainly controlled by electron transfer from PSII to PSI. Taking together, PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in P. rubra, which is different from the mechanisms of PSI photoinhibition in Arabidopsis thaliana and cucumber.


Datum: 01.07.2016


René Marcelle (December 30, 1931–December 18, 2011), the first editor-in-chief of Photosynthesis Research

Abstract

This tribute honors the first editor-in-chief of Photosynthesis Research, René Marcelle the Belgian plant physiologist who, with publishers in The Netherlands, launched the journal in 1980. Here, we present a glimpse of René Marcelle’s early life, his education and research, as well as his editorial work for the journal and other conferences in plant physiology. He worked on control of photosynthesis, both the biological and environmental aspects, as well as on crassulacean acid metabolism. He is best remembered as a kind-hearted and humane editor.


Datum: 01.07.2016


A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis

Abstract

Steady-state rates of leaf CO2 assimilation (A) in response to incubation temperature (T) are often symmetrical around an optimum temperature. A/T curves of C3 plants can thus be fitted to a modified Arrhenius equation, where the activation energy of A close to a low reference temperature is strongly correlated with the dynamic change of activation energy to increasing incubation temperature. We tested how [CO2] < current atmospheric levels and saturating light, or [CO2] at 800 µmol mol−1 and variable light affect parameters that describe A/T curves, and how these parameters are related to known properties of temperature-dependent thylakoid electron transport. Variation of light intensity and substomatal [CO2] had no influence on the symmetry of A/T curves, but significantly affected their breadth. Thermodynamic and kinetic (physiological) factors responsible for (i) the curvature in Arrhenius plots and (ii) the correlation between parameters of a modified Arrhenius equation are discussed. We argue that the shape of A/T curves cannot satisfactorily be explained via classical concepts assuming temperature-dependent shifts between rate-limiting processes. Instead the present results indicate that any given A/T curve appears to reflect a distinct flux mode, set by the balance between linear and cyclic electron transport, and emerging from the anabolic demand for ATP relative to that for NADPH.


Datum: 01.07.2016


In photosynthesis, oxygen comes from water: from a 1787 book for women by Monsieur De Fourcroy

Abstract

It is now well established that the source of oxygen in photosynthesis is water. The earliest suggestion previously known to us had come from René Bernard Wurmser (1930). Here, we highlight an earlier report by Monsieur De Fourcroy (1787), who had already discussed the broad outlines of such a hypothesis in a book on Chemistry written for women. We present here a free translation of a passage from this book, with the original text in French as an Appendix.


Datum: 01.07.2016


Crystal structure analysis of C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM

Abstract

The role of unique sequence features of C-phycoerythrin, isolated from Phormidium sp. A09DM, has been investigated by crystallographic studies. Two conserved indels (i.e. inserts or deletions) are found in the β-subunit of Phormidium phycoerythrin that are distinctive characteristics of large number of cyanobacterial sequences. The identified signatures are a two-residue deletion from position 21 and a nine-residue insertion at position 146. Crystals of Phormidium phycoerythrin were obtained at pH values of 5 and 8.5, and structures have been resolved to high precision at 1.95 and 2.1 Å resolution, respectively. In both the structures, heterodimers of α- and β- subunits assemble as hexamers. The 7-residue insertion at position 146 significantly reduces solvent exposure of π-conjugated A–C rings of a phycoerythrobilin (PEB) chromophore, and can influence energy absorption and energy transfer characteristics. The structural analyses (with 12-fold redundancy) suggest that protein micro-environment alone dictates the conformation of bound chromophores. The low- and high-energy absorbing chromophores are identified based on A–B ring coplanarity. The spatial distribution of these is found to be similar to that observed in R-phycoerythrin, suggesting the direction of energy transfer from outer-surface of hexamer to inner-hollow cavity in the Phormidium protein. The crystal structures also reveal that a commonly observed Hydrogen-bonding network in phycobiliproteins, involving chromophore bound to α-subunit and amino acid at position 73 of β-subunit, may not be essential for structural and functional integrity of C-phycoerythrin orthologs. In solution, the protein displays slight red shift and decrease in fluorescence emission at acidic pH. The mechanism for which may be static and correlates with the proximity of +ve electric field of Arg148 to the C-ring of a PEB chromophore.


Datum: 01.07.2016






Information about this site:

Last update: 27.01.2016

The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.

To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!

Topic: Current, research, scientific, photosynthesis, chemistry, function, articles, Journal.




(C) 1996 - 2016 Internetchemistry













Current Chemistry Job Vacancies:

[more job vacancies]