[Sitemap] [Contact] [Imprint] Deutsche Version Search site 

Atmospheric Chemistry and Physics - Current Research Articles



Current research articles: Atmospheric Chemistry

The author- or copyrights of the listed research articles below are held by the respective authors or site operators, who are also responsible for the content of the presentations.

More current articles from Chemistry Journals same topic: see the navigation menu on the left.

To list your article here please contact us by eMail.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!




On this page considered journals:



Atmospheric Chemistry and Physics - published by Copernicus Publications

ACP is an international scientific open access journal dedicated to the publication and public discussion of high quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere and mesosphere.




Current articles of the journal:



Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011

Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011

Atmospheric Chemistry and Physics, 14, 11011-11029, 2014

Author(s): Y. Y. Cui, A. Hodzic, J. N. Smith, J. Ortega, J. Brioude, H. Matsui, E. J. T. Levin, A. Turnipseed, P. Winkler, and B. de Foy

Formation and growth of ultrafine particles is crudely represented in chemistry-climate models, contributing to uncertainties in aerosol composition, size distribution, and aerosol effects on cloud condensation nuclei (CCN) concentrations. Measurements of ultrafine particles, their precursor gases, and meteorological parameters were performed in a ponderosa pine forest in the Colorado Front Range in July–August 2011, and were analyzed to study processes leading to small particle burst events (PBEs) which were characterized by an increase in the number concentrations of ultrafine 4–30 nm diameter size particles. These measurements suggest that PBEs were associated with the arrival at the site of anthropogenic pollution plumes midday to early afternoon. During PBEs, number concentrations of 4–30 nm diameter particles typically exceeded 104 cm?3, and these elevated concentrations coincided with increased SO2 and monoterpene concentrations, and led to a factor-of-2 increase in CCN concentrations at 0.5% supersaturation. The PBEs were simulated using the regional WRF-Chem model, which was extended to account for ultrafine particle sizes starting at 1 nm in diameter, to include an empirical activation nucleation scheme in the planetary boundary layer, and to explicitly simulate the subsequent growth of Aitken particles (10–100 nm) by condensation of organic and inorganic vapors. The updated model reasonably captured measured aerosol number concentrations and size distribution during PBEs, as well as ground-level CCN concentrations. Model results suggest that sulfuric acid originating from anthropogenic SO2 triggered PBEs, and that the condensation of monoterpene oxidation products onto freshly nucleated particles contributes to their growth. The simulated growth rate of ~ 3.4 nm h?1 for 4–40 nm diameter particles was comparable to the measured average value of 2.3 nm h?1. Results also suggest that the presence of PBEs tends to modify the composition of sub-20 nm diameter particles, leading to a higher mass fraction of sulfate aerosols. Sensitivity simulations suggest that the representation of nucleation processes in the model largely influences the predicted number concentrations and thus CCN concentrations. We estimate that nucleation contributes 67% of surface CCN at 0.5% supersaturation in this pine forest environment.

Posted on 20 October 2014 | 12:00 am


Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

Atmospheric Chemistry and Physics, 14, 10989-11010, 2014

Author(s): X. Wang, C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke

Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm?2 (0.08 Wm?2 from anthropogenic sources and 0.05 Wm?2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm?2, with an additional +0.11 Wm?2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of ?80%/+140%. Our estimates are at the lower end of the 0.2–1.0 Wm?2 range from previous studies, and substantially less than the +0.6 Wm?2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the effect on the vertical profile) and the incorrect attribution of BrC absorption to BC.

Posted on 20 October 2014 | 12:00 am


Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

Atmospheric Chemistry and Physics, 14, 10977-10988, 2014

Author(s): C. Warneke, F. Geiger, P. M. Edwards, W. Dube, G. Pétron, J. Kofler, A. Zahn, S. S. Brown, M. Graus, J. B. Gilman, B. M. Lerner, J. Peischl, T. B. Ryerson, J. A. de Gouw, and J. M. Roberts

Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

Posted on 17 October 2014 | 12:00 am


TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling

TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling

Atmospheric Chemistry and Physics, 14, 10963-10976, 2014

Author(s): J. J. P. Kuenen, A. J. H. Visschedijk, M. Jozwicka, and H. A. C. Denier van der Gon

Emissions to air are reported by countries to EMEP. The emissions data are used for country compliance checking with EU emission ceilings and associated emission reductions. The emissions data are also necessary as input for air quality modelling. The quality of these "official" emissions varies across Europe.

As alternative to these official emissions, a spatially explicit high-resolution emission inventory (7 × 7 km) for UNECE-Europe for all years between 2003 and 2009 for the main air pollutants was made. The primary goal was to supply air quality modellers with the input they need. The inventory was constructed by using the reported emission national totals by sector where the quality is sufficient. The reported data were analysed by sector in detail, and completed with alternative emission estimates as needed. This resulted in a complete emission inventory for all countries.

For particulate matter, for each source emissions have been split in coarse and fine particulate matter, and further disaggregated to EC, OC, SO4, Na and other minerals using fractions based on the literature. Doing this at the most detailed sectoral level in the database implies that a consistent set was obtained across Europe. This allows better comparisons with observational data which can, through feedback, help to further identify uncertain sources and/or support emission inventory improvements for this highly uncertain pollutant.

The resulting emission data set was spatially distributed consistently across all countries by using proxy parameters. Point sources were spatially distributed using the specific location of the point source. The spatial distribution for the point sources was made year-specific.

The TNO-MACC_II is an update of the TNO-MACC emission data set. Major updates included the time extension towards 2009, use of the latest available reported data (including updates and corrections made until early 2012) and updates in distribution maps.

Posted on 17 October 2014 | 12:00 am


Corrigendum to "A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements" published in Atmos. Chem. Phys., 14, 3991–4012, 2014

Corrigendum to "A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements" published in Atmos. Chem. Phys., 14, 3991–4012, 2014

Atmospheric Chemistry and Physics, 14, 10961-10962, 2014

Author(s): S. Houweling, M. Krol, P. Bergamaschi, C. Frankenberg, E. J. Dlugokencky, I. Morino, J. Notholt, V. Sherlock, D. Wunch, V. Beck, C. Gerbig, H. Chen, E. A. Kort, T. Röckmann, and I. Aben

No abstract available.

Posted on 16 October 2014 | 12:00 am


The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

Atmospheric Chemistry and Physics, 14, 10931-10960, 2014

Author(s): M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei

Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state.

These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere.

Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions.

Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period.

Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.

Posted on 16 October 2014 | 12:00 am


Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study

Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study

Atmospheric Chemistry and Physics, 14, 10911-10930, 2014

Author(s): T. K. V. Nguyen, M. D. Petters, S. R. Suda, H. Guo, R. J. Weber, and A. G. Carlton

We present in situ measurements of particle-phase liquid water. Measurements were conducted from 3 June to 15 July 2013 during the Southern Oxidant and Aerosol Study (SOAS) in the southeastern US. The region is photochemically active, humid, dominated by biogenic emissions, impacted by anthropogenic pollution, and known to contain high concentrations of organic aerosol mass. Measurements characterized mobility number size distributions of ambient atmospheric aerosols in three states: unperturbed, dry, and dry-humidified. Unperturbed measurements describe the aerosol distribution at ambient temperature and relative humidity. For the dry state, the sample was routed through a cold trap upstream of the inlet then reheated, while for the dry-humidified state the sample was rehumidified after drying. The total volume of water and semi-volatile compounds lost during drying was quantified by differencing dry and unperturbed volumes from the integrated size spectra, while semi-volatile volumes lost during drying were quantified differencing unperturbed and dry-humidified volumes. Results indicate that particle-phase liquid water was always present. Throughout the SOAS campaign, median water mass concentrations at the relative humidity (RH) encountered in the instrument typically ranged from 1 to 5 ?g m?3 but were as high as 73 ?g m?3. On non-raining days, morning time (06:00–09:00) median mass concentrations exceeded 15 ?g m?3. Hygroscopic growth factors followed a diel cycle and exceed 2 from 07:00 to 09:00 local time. The hygroscopicity parameter kappa ranged from 0.14 to 0.46 and hygroscopicity increased with increasing particle size. An observed diel cycle in kappa is consistent with changes in aerosol inorganic content and a dependency of the hygroscopicity parameter on water content. Unperturbed and dry-humidified aerosol volumes did not result in statistically discernible differences, demonstrating that drying did not lead to large losses in dry particle volume. We anticipate that our results will help improve the representation of aerosol water content and aqueous-phase-mediated partitioning of atmospheric water-soluble gases in photochemical models.

Posted on 16 October 2014 | 12:00 am


The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany

The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany

Atmospheric Chemistry and Physics, 14, 10823-10843, 2014

Author(s): B. Bonn, E. Bourtsoukidis, T. S. Sun, H. Bingemer, L. Rondo, U. Javed, J. Li, R. Axinte, X. Li, T. Brauers, H. Sonderfeld, R. Koppmann, A. Sogachev, S. Jacobi, and D. V. Spracklen

It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.

Posted on 15 October 2014 | 12:00 am


Characteristics of the raindrop distributions in RICO shallow cumulus

Characteristics of the raindrop distributions in RICO shallow cumulus

Atmospheric Chemistry and Physics, 14, 10897-10909, 2014

Author(s): O. Geoffroy, A. P. Siebesma, and F. Burnet

The physical properties of rain spectra are generally modeled using an analytical distribution. It is common for the gamma distribution and, to a lesser extent, the lognormal distribution to be used. The majority of studies in the literature focusing on the characterization of raindrop distribution are based on deep convective cloud observations, mostly at ground level. This study focuses on shallow-cumulus rain distributions throughout the depth of the cloud layer and subcloud layer using airborne in situ measurements made with both the Particle Measuring Systems (PMS) Optical Array Probe 260X (OAP-260-X) and the PMS two-Dimensional Precipitation (2DP) instruments during the Rain in Cumulus over the Ocean (RICO) field experiment. Sampled spectra analyzed on the scale of large-eddy simulation resolution (100 m) are found to be relatively broad, with values of the shape parameter – υ for the gamma law and σg for the lognormal law – on the order of 1–3 and 1.5–2, respectively. The dependence of the shape parameters on the main rain variables (number concentration, water content, mean volume diameter, sedimentation fluxes and radar reflectivity) is examined, and a parameterization of the shape parameters υ and σg as a function of a power law of the rainwater content and raindrop number concentration is proposed.

Posted on 15 October 2014 | 12:00 am


The AeroCom evaluation and intercomparison of organic aerosol in global models

The AeroCom evaluation and intercomparison of organic aerosol in global models

Atmospheric Chemistry and Physics, 14, 10845-10895, 2014

Author(s): K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang

This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models.

The median global primary OA (POA) source strength is 56 Tg a?1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a?1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a?1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a?1; range 13–20 Tg a?1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a?1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition.

Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern.

Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to ?0.62 (?0.51) based on the comparison against OC (OA) urban data of all models at the surface, ?0.15 (+0.51) when compared with remote measurements, and ?0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.

Posted on 15 October 2014 | 12:00 am


Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data

Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data

Atmospheric Chemistry and Physics, 14, 10803-10822, 2014

Author(s): A. Kunz, N. Spelten, P. Konopka, R. Müller, R. M. Forbes, and H. Wernli

An evaluation of water vapor in the upper troposphere and lower stratosphere (UTLS) of the ERA-Interim, the global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. Water vapor measurements are derived from the Fast In situ Stratospheric Hygrometer (FISH) during a large set of airborne measurement campaigns from 2001 to 2011 in the tropics, midlatitudes and polar regions, covering isentropic layers from 300 to 400K (5–18km).

The comparison shows around 87% of the reanalysis data are within a factor of 2 of the FISH water vapor measurements and around 30% have a nearly perfect agreement with an over- and underestimation lower than 10%. Nevertheless, strong over- and underestimations can occur both in the UT and LS, in particularly in the extratropical LS and in the tropical UT, where severe over- and underestimations up to 10 times can occur.

The analysis data from the evolving ECMWF operational system is also evaluated, and the FISH measurements are divided into time periods representing different cycles of the Integrated Forecast System (IFS). The agreement with FISH improves over the time, in particular when comparing water vapor fields for time periods before 2004 and after 2010. It appears that influences of tropical tropospheric and extratropical UTLS processes, e.g., convective and quasi-isentropic exchange processes, are particularly challenging for the simulation of the UTLS water vapor distribution. Both the reanalysis and operational analysis data show the tendency of an overestimation of low water vapor mixing ratio (⪅10ppmv) in the LS and underestimation of high water vapor mixing ratio (⪆300ppmv) in the UT.

Posted on 14 October 2014 | 12:00 am


Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex

Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex

Atmospheric Chemistry and Physics, 14, 10785-10801, 2014

Author(s): S. Molleker, S. Borrmann, H. Schlager, B. Luo, W. Frey, M. Klingebiel, R. Weigel, M. Ebert, V. Mitev, R. Matthey, W. Woiwode, H. Oelhaf, A. Dörnbrack, G. Stratmann, J.-U. Grooß, G. Günther, B. Vogel, R. Müller, M. Krämer, J. Meyer, and F. Cairo

In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40?m were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35?m were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2?m in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2?m in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by sedimentation of large HNO3-containing particles, generally considered to be NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Answering these would improve the numerical simulation of PSC microphysical processes like cloud particle formation, growth and denitrification, which is necessary for better predictions of future polar ozone losses, especially under changing global climate conditions. Generally, it seems that the occurrence of large NAT particles – sometimes termed "NAT rocks" – are a regular feature of synoptic-scale PSCs in the Arctic.

Posted on 14 October 2014 | 12:00 am


Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

Atmospheric Chemistry and Physics, 14, 10773-10784, 2014

Author(s): K. E. Daumit, A. J. Carrasquillo, J. F. Hunter, and J. H. Kroll

Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas–particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

Posted on 14 October 2014 | 12:00 am


The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy

The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy

Atmospheric Chemistry and Physics, 14, 10761-10772, 2014

Author(s): S. S. Steimer, M. Lampimäki, E. Coz, G. Grzinic, and M. Ammann

Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a scanning transmission X-ray microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain near-edge X-ray absorption fine structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid–water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the timescale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.

Posted on 13 October 2014 | 12:00 am


Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains

Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains

Atmospheric Chemistry and Physics, 14, 10741-10759, 2014

Author(s): Yuanchun Zhang, Fuqing Zhang, and Jianhua Sun

A wave-number-frequency spectral decomposition technique is used to analyze the high-resolution NOAA/Climate Prediction Center morphing technique (CMORPH) precipitation data set and to explore the differences and similarities of the diurnal variation of warm-season precipitation in the East Asia and North America downstream of big topography. The predominant phase speed of precipitation at different time scales for North America, averaged over all warm-season months (May–August) for 2003–2010, is ~20 ms?1, which is faster than the speed of ~14 ms?1 calculated for East Asia. Consistent with the recent studies of the precipitation diurnal cycles for these two regions, the difference in the diurnal phase propagation is likely due to the difference in the mean steering level wind speed for these two regions. The wave-number-frequency spectral analysis further reveals the complex, multi-scale, multi-modal nature of the warm-season precipitation variation embedded within the diurnal cycle over both continents, with phase speeds varying from 10 to 30 ms?1 and wave periods varying from diurnal to a few hours. At the diurnal frequency regulated by the thermodynamically driven mountains–plains solenoids (MPSs), increased precipitation for both continents first originates in the afternoon from the eastern edge of big topography and subsequently moves downslope in the evening and reaches the broad plains area at night. More complex diurnal evolutions are observed in East Asia due to the more complex, multistep terrains east of the Tibetan Plateau and the associated localized MPS circulations. Nevertheless, increased variation of precipitation at smaller spatial and temporal scales is evident in the active phase of the dominant diurnal cycle for both continents.

Posted on 13 October 2014 | 12:00 am


Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash

Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash

Atmospheric Chemistry and Physics, 14, 10649-10661, 2014

Author(s): A. Rocha-Lima, J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. Artaxo

Better characterization of the optical properties of aerosol particles are an essential step to improve atmospheric models and satellite remote sensing, reduce uncertainties in predicting particulate transport, and estimate aerosol forcing and climate change. Even natural aerosols such as mineral dust or particles from volcanic eruptions require better characterization in order to define the background conditions from which anthropogenic perturbations emerge. We present a detailed laboratorial study where the spectral optical properties of the ash from the April–May (2010) Eyjafjallajökull volcanic eruption were derived over a broad spectral range, from ultra-violet (UV) to near-infrared (NIR) wavelengths. Samples of the volcanic ash taken on the ground in the vicinity of the volcano were sieved, re-suspended, and collected on filters to separate particle sizes into fine and mixed (coarse and fine) modes. We derived the spectral mass absorption efficiency αabs [m2g−1] for fine and mixed modes particles in the wavelength range from 300 to 2500 nm from measurements of optical reflectance. We retrieved the imaginary part of the complex refractive index Im(m) from αabs, using Mie–Lorenz and T-matrix theories and considering the size distribution of particles obtained by scanning electron microscopy (SEM), and the grain density of the volcanic ash measured as ρ = 2.16 ± 0.13 g cm−3. Im(m) was found to vary from 0.001 to 0.005 in the measured wavelength range. The dependence of the retrieval on the shape considered for the particles were found to be small and within the uncertainties estimated in our calculation. Fine and mixed modes were also analyzed by X-ray fluorescence, exhibiting distinct elemental composition supporting the optical differences we found between the modes. This is a comprehensive and consistent characterization of spectral absorption and imaginary refractive index, density, size, shape and elemental composition of volcanic ash, which will help constrain assumptions of ash particles in models and remote sensing, thereby narrowing uncertainties in representing these particles both for short-term regional forecasts and long-term climate change.

Posted on 10 October 2014 | 12:00 am


Estimating regional greenhouse gas fluxes: an uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

Estimating regional greenhouse gas fluxes: an uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

Atmospheric Chemistry and Physics, 14, 10705-10719, 2014

Author(s): X. Zhang, X. Lee, T. J. Griffis, J. M. Baker, and W. Xiao

Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate regional-scale GHG fluxes and evaluate the GHG fluxes derived from bottom-up approaches. We first applied the eddy covariance, equilibrium, inverse modeling (CarbonTracker), and flux aggregation methods using 3 years of carbon dioxide (CO2) measurements on a 244 m tall tower in the upper Midwest, USA. We then applied the equilibrium method for estimating CH4 and N2O fluxes with 1-month high-frequency CH4 and N2O gradient measurements on the tall tower and 1-year concentration measurements on a nearby tall tower, and evaluated the uncertainties of this application. The results indicate that (1) the flux aggregation, eddy covariance, the equilibrium method, and the CarbonTracker product all gave similar seasonal patterns of the regional CO2 flux (105−106 km2, but that the equilibrium method underestimated the July CO2 flux by 52–69%. (2) The annual budget varied among these methods from ?54 to ?131 g C–CO2 m?2 yr?1, indicating a large uncertainty in the annual CO2 flux estimation. (3) The regional CH4 and N2O emissions according to a top-down method were at least 6 and 2 times higher than the emissions from a bottom-up inventory (Emission Database for Global Atmospheric Research), respectively. (4) The global warming potentials of the CH4 and N2O emissions were equal in magnitude to the cooling benefit of the regional CO2 uptake. The regional GHG budget, including both biological and anthropogenic origins, is estimated at 7 ± 160 g CO2 equivalent m?2 yr?1.

Posted on 10 October 2014 | 12:00 am


Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

Atmospheric Chemistry and Physics, 14, 10663-10686, 2014

Author(s): P. Formenti, S. Caquineau, K. Desboeufs, A. Klaver, S. Chevaillier, E. Journet, and J. L. Rajot

In the last few years, several ground-based and airborne field campaigns have allowed the exploration of the properties and impacts of mineral dust in western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide a large-scale quantitative view of the mineralogical composition and its variability according to source region and time after transport. This work reveals that mineral dust in western Africa is a mixture of clays, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass, depending on the origin. Our data do not show a systematic dependence of the dust mineralogical composition on origin; this is to be the case as, in most of the instances, the data represent the composition of the atmospheric burden after 1–2 days after emission, when air masses mix and give rise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models and in satellite retrievals. Iron oxides account for 58 ± 7% of the mass of elemental Fe and for between 2 and 5% of the dust mass. Most of them are composed of goethite, representing between 52 and 78% of the iron oxide mass. We estimate that titanium oxides account for 1–2% of the dust mass, depending on whether the dust is of Saharan or Sahelian origin. The mineralogical composition is a critical parameter for estimating the radiative and biogeochemical impact of mineral dust. The results regarding dust composition have been used to estimate the optical properties as well as the iron fractional solubility of Saharan and Sahelian dust. Data presented in this paper are provided in numerical form upon email request while they are being turned into a public database, the Dust-Mapped Archived Properties (DUST-MAP), which is an open repository for compositional data from other source regions in Africa and worldwide.

Posted on 10 October 2014 | 12:00 am


Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?

Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?

Atmospheric Chemistry and Physics, 14, 10687-10704, 2014

Author(s): C. O'Dowd, D. Ceburnis, J. Ovadnevaite, A. Vaishya, M. Rinaldi, and M. C. Facchini

Atmospheric aerosols have been sampled and characterised at the Mace Head north-east (NE) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station compared to that of aerosol over the pristine open-ocean. Two recurring criticisms relate to the lack of representativeness due to potentially enhanced coastal sources, possibly leading to artificially high values of aerosol concentrations, and to the influence of long-range transport of anthropogenic or continental aerosol and its potential dominance over, or perturbation of, a natural marine aerosol signal. Here, we review the results of previous experimental studies on marine aerosols over the NE Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of a pristine open-ocean aerosol, i.e. with negligible anthropogenic/continental influence. Particular focus is given to submicron organic matter (OM) aerosol. In summary, no correlation was found between OM and black carbon (BC) in marine air conforming to clean-air sampling criteria, either at BC levels of 0–15 or 15–50 ng m?3, suggesting that OM concentrations, up to observed peak values of 3.8 ?g m?3, are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing techniques corroborate the conclusion that there is a predominant natural source of OM, with 80% biogenic source apportionment being observed for general clean-air conditions, rising to ∼98% during specific primary marine organic plumes when peak OM mass concentrations > 3 ?g m?3 are observed. Similarly, a maximum contribution of 20% OM mass coming from non-marine sources was established by dual carbon isotope analysis. Further, analysis of a series of experiments conducted at Mace Head conclude that negligible coastal, surf zone, or tidal effects are discernible in the secondary or primary aerosol mass residing in the submicron size range for sampling heights of 7 m and above. The Mace Head marine-air criteria ensure anthropogenic and coastal effects are sufficiently minimised so as to guarantee a predominant, and sometimes overwhelming, natural marine aerosol contribution to the total aerosol population when the criteria are adhered to.

Posted on 10 October 2014 | 12:00 am


Surface gas pollutants in Lhasa, a highland city of Tibet – current levels and pollution implications

Surface gas pollutants in Lhasa, a highland city of Tibet – current levels and pollution implications

Atmospheric Chemistry and Physics, 14, 10721-10730, 2014

Author(s): L. Ran, W. L. Lin, Y. Z. Deji, B. La, P. M. Tsering, X. B. Xu, and W. Wang

Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.

Posted on 10 October 2014 | 12:00 am


Airborne flux measurements of biogenic isoprene over California

Airborne flux measurements of biogenic isoprene over California

Atmospheric Chemistry and Physics, 14, 10631-10647, 2014

Author(s): P. K. Misztal, T. Karl, R. Weber, H. H. Jonsson, A. B. Guenther, and A. H. Goldstein

Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR–MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m?2 h−1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions.

Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in the residual layer above the valley and mix down into the valley in the morning. Thus, the isoprene emissions surrounding the valley have relevance for the regional photochemistry that is not immediately apparent solely from the direct emission flux distribution.

This paper reports the first regional observations of fluxes from specific sources by eddy covariance from an aircraft which can finally constrain statewide isoprene emission inventories used for ozone simulations by state agencies. While previously there was no available means to constrain the biogenic models, our results provide a good understanding of what the major sources of isoprene are in California, their magnitude, and how they are distributed.

This data set on isoprene fluxes will be particularly useful for evaluating potential model alternatives which will be dealt with in a separate paper to assess isoprene emission models and their driving variable data sets.

Posted on 10 October 2014 | 12:00 am


Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material

Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material

Atmospheric Chemistry and Physics, 14, 10731-10740, 2014

Author(s): M. A. Upshur, B. F. Strick, V. F. McNeill, R. J. Thomson, and F. M. Geiger

Secondary organic aerosol (SOA) particles, formed from gas-phase biogenic volatile organic compounds (BVOCs), contribute large uncertainties to the radiative forcing that is associated with aerosols in the climate system. Reactive uptake of surface-active organic oxidation products of BVOCs at the gas–aerosol interface can potentially decrease the overall aerosol surface tension and therefore influence their propensity to act as cloud condensation nuclei (CCN). Here, we synthesize and measure some climate-relevant physical properties of SOA particle constituents consisting of the isoprene oxidation products ?-, ?-, and cis- and trans-?-IEPOX (isoprene epoxide), as well as syn- and anti-2-methyltetraol. Following viscosity measurements, we use octanol–water partition coefficients to quantify the relative hydrophobicity of the oxidation products while dynamic surface tension measurements indicate that aqueous solutions of ?- and trans-?-IEPOX exhibit significant surface tension depression. We hypothesize that the surface activity of these compounds may enhance aerosol CCN activity, and that trans-?-IEPOX may be highly relevant for surface chemistry of aerosol particles relative to other IEPOX isomers.

Posted on 10 October 2014 | 12:00 am


Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI

Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI

Atmospheric Chemistry and Physics, 14, 10589-10600, 2014

Author(s): C. Doche, G. Dufour, G. Foret, M. Eremenko, J. Cuesta, M. Beekmann, and P. Kalabokas

The Mediterranean basin is one of the most sensitive regions in the world regarding climate change and air quality. This is partly due to the singular dynamical situation of the Mediterranean basin that leads to tropospheric-ozone concentrations that are among the highest over the Northern Hemisphere. Six years of summertime tropospheric ozone observed by the Infrared Atmospheric Sounding Interferometer (IASI) instrument from 2007 to 2012 have been analysed to document the variability of ozone over this region. The satellite observations have been examined together with meteorological analyses (from ECMWF) to understand the processes driving this variability. Our work confirmed the presence of a steep west–east ozone gradient in the lower troposphere with the highest concentrations observed over the eastern part of the Mediterranean basin. This gradient is mainly explained by diabatic convection over the Persian Gulf during the Indian monsoon season, which induces an important subsidence of ozone-rich air masses from the upper to the lower troposphere over the central and the eastern Mediterranean basin. IASI observations of ozone concentrations at a 3 km height show a clear summertime maximum in July that is well correlated to the maximum of downward transport of ozone-rich air masses from the upper troposphere. Even if this feature is robust over the six analysed years, we have also investigated monthly ozone anomalies – one positive (June 2008) and one negative (June and July 2009) – using daily IASI observations. We show that the relative position and the strength of the meteorological systems (Azores anticyclone and Middle Eastern depression) present over the Mediterranean are key factors in explaining both the variability and the anomalies of ozone in the lower troposphere in this region.

Posted on 9 October 2014 | 12:00 am


Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

Atmospheric Chemistry and Physics, 14, 10601-10618, 2014

Author(s): S. K. Ebmeier, A. M. Sayer, R. G. Grainger, T. A. Mather, and E. Carboni

The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002–2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002–2008) data. Retrievals of aerosol and cloud properties at K?lauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Réunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes – including those from passive degassing, Strombolian activity and minor explosions – lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2–8 ?m at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm?2 at distances of 150–400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.

Posted on 9 October 2014 | 12:00 am


First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI)

First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI)

Atmospheric Chemistry and Physics, 14, 10565-10588, 2014

Author(s): S. Choi, J. Joiner, Y. Choi, B. N. Duncan, A. Vasilkov, N. Krotkov, and E. Bucsela

We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.

Posted on 9 October 2014 | 12:00 am


Air quality in Delhi during the Commonwealth Games

Air quality in Delhi during the Commonwealth Games

Atmospheric Chemistry and Physics, 14, 10619-10630, 2014

Author(s): P. Marrapu, Y. Cheng, G. Beig, S. Sahu, R. Srinivas, and G. R. Carmichael

Air quality during the Commonwealth Games (CWG, held in Delhi in October 2010) is analyzed using a new air quality forecasting system established for the games. The CWG stimulated enhanced efforts to monitor and model air quality in the region. The air quality of Delhi during the CWG had high levels of particles with mean values of PM2.5 and PM10 at the venues of 111 and 238 ?g m?3, respectively. Black carbon (BC) accounted for ~ 10% of the PM2.5 mass. It is shown that BC, PM2.5 and PM10 concentrations are well predicted, but with positive biases of ~ 25%. The diurnal variations are also well captured, with both the observations and the modeled values showing nighttime maxima and daytime minima. A new emissions inventory, developed as part of this air quality forecasting initiative, is evaluated by comparing the observed and predicted species-species correlations (i.e., BC : CO; BC : PM2.5; PM2.5 : PM10). Assuming that the observations at these sites are representative and that all the model errors are associated with the emissions, then the modeled concentrations and slopes can be made consistent by scaling the emissions by 0.6 for NOx, 2 for CO, and 0.7 for BC, PM2.5, and PM10. The emission estimates for particles are remarkably good considering the uncertainty in the estimates due to the diverse spread of activities and technologies that take place in Delhi and the rapid rates of change.

The contribution of various emission sectors including transportation, power, domestic and industry to surface concentrations are also estimated. Transport, domestic and industrial sectors all make significant contributions to PM levels in Delhi, and the sectoral contributions vary spatially within the city. Ozone levels in Delhi are elevated, with hourly values sometimes exceeding 100 ppb. The continued growth of the transport sector is expected to make ozone pollution a more pressing air pollution problem in Delhi. The sector analysis provides useful inputs into the design of strategies to reduce air pollution levels in Delhi. The contribution for sources outside of Delhi on Delhi air quality range from ~ 25% for BC and PM to ~ 60% for day time ozone. The significant contributions from non-Delhi sources indicates that in Delhi (as has been show elsewhere) these strategies will also need a more regional perspective.

Posted on 9 October 2014 | 12:00 am


Ion – particle interactions during particle formation and growth at a coniferous forest site in central Europe

Ion – particle interactions during particle formation and growth at a coniferous forest site in central Europe

Atmospheric Chemistry and Physics, 14, 10547-10563, 2014

Author(s): S. G. Gonser, F. Klein, W. Birmili, J. Größ, M. Kulmala, H. E. Manninen, A. Wiedensohler, and A. Held

In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.

Posted on 9 October 2014 | 12:00 am


Airborne characterization of smoke marker ratios from prescribed burning

Airborne characterization of smoke marker ratios from prescribed burning

Atmospheric Chemistry and Physics, 14, 10535-10545, 2014

Author(s): A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.

A Particle-Into-Liquid Sampler – Total Organic Carbon (PILS-TOC) and fraction collector system was flown aboard a Twin Otter aircraft sampling prescribed burning emissions in South Carolina in November 2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated offline samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, and galactosan) analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have a unique ?levoglucosan/?water-soluble organic carbon (WSOC) ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 ?g C ?g?1 C, RF08 = 0.115 ± 0.011 ?g C ?g?1 C, RF09A = 0.072 ± 0.028 ?g C ?g?1 C, and RF09B = 0.042 ± 0.008 ?g C ?g?1 C, where RF means research flight). These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/F02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the ?galactosan/?levoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 ?g ?g?1, RF08 = 0.085 ± 0.009 ?g ?g?1, and RF09A = 0.101 ± 0.029 ?g ?g?1) obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between ?potassium/?levoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The ?levoglucosan/?WSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.

Posted on 9 October 2014 | 12:00 am


Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign

Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign

Atmospheric Chemistry and Physics, 14, 10517-10533, 2014

Author(s): E. Hammer, M. Gysel, G. C. Roberts, T. Elias, J. Hofer, C. R. Hoyle, N. Bukowiecki, J.-C. Dupont, F. Burnet, U. Baltensperger, and E. Weingartner

Fog-induced visibility reduction is responsible for a variety of hazards in the transport sector. Therefore there is a large demand for an improved understanding of fog formation and thus improved forecasts. Improved fog forecasts require a better understanding of the numerous complex mechanisms during the fog life cycle. During winter 2012/13 a field campaign called ParisFog aiming at fog research took place at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research). SIRTA is located about 20 km southwest of the Paris city center, France, in a semi-urban environment. In situ activation properties of the prevailing fog were investigated by measuring (1) total and interstitial (non-activated) dry particle number size distributions behind two different inlet systems; (2) interstitial hydrated aerosol and fog droplet size distributions at ambient conditions; and (3) cloud condensation nuclei (CCN) number concentration at different supersaturations (SS) with a CCN counter. The aerosol particles were characterized regarding their hygroscopic properties, fog droplet activation behavior and contribution to light scattering for 17 developed fog events. Low particle hygroscopicity with an overall median of the hygroscopicity parameter, κ, of 0.14 was found, likely caused by substantial influence from local traffic and wood burning emissions. Measurements of the aerosol size distribution at ambient RH revealed that the critical wet diameter, above which the hydrated aerosols activate to fog droplets, is rather large (with a median value of 2.6μm) and is highly variable (ranging from 1 to 5μm) between the different fog events. Thus, the number of activated fog droplets was very small and the non-activated hydrated particles were found to contribute significantly to the observed light scattering and thus to the reduction in visibility. Combining all experimental data, the effective peak supersaturation, SSpeak, a measure of the peak supersaturation during the fog formation, was determined. The median SSpeak value was estimated to be in the range from 0.031 to 0.046% (upper and lower limit estimations), which is in good agreement with previous experimental and modeling studies of fog.

Posted on 7 October 2014 | 12:00 am


Temporal variations in rainwater methanol

Temporal variations in rainwater methanol

Atmospheric Chemistry and Physics, 14, 10509-10516, 2014

Author(s): J. D. Felix, S. B. Jones, G. B. Avery, J. D. Willey, R. N. Mead, and R. J. Kieber

This work reports the first comprehensive analysis of methanol concentrations in rainwater. Methanol concentrations measured in 49 rain events collected between 28 August 2007 and 10 July 2008 in Wilmington, NC, USA, ranged from below the detection limit of 6 nM to 9.3 ?M with a volume-weighted average concentration of 1 ± 0.2 ?M. Methanol concentrations in rainwater were up to ~200 times greater than concentrations reported previously in marine waters, indicating wet deposition as a potentially significant source of methanol to marine waters. Assuming that these methanol concentrations are an appropriate proxy for global methanol rainwater concentrations, the global methanol wet deposition sink is estimated as 20 Tg yr?1, which implies that previous methanol budgets underestimate removal by precipitation. Methanol concentrations in rainwater did not correlate significantly with H+, NO3, and NSS, which suggests that the dominant source of the alcohol to rainwater is not anthropogenic. However, methanol concentrations were strongly correlated with acetaldehyde, which has a primarily biogenic input. The methanol volume-weighted concentration during the summer (2.7 ± 0.9 ?M) was ~3 times that of the winter (0.9 ± 0.2 ?M), further promoting biogenic emissions as the primary cause of temporal variations of methanol concentrations. Methanol concentrations peaked in rainwater collected during the time period 12 p.m.–6 p.m. Peaking during this period of optimal sunlight implies a possible relationship with photochemical methanol production, but there are also increases in biogenic activity during this time period. Rain events with terrestrial origin had greater concentrations than those of marine origin, demonstrating the significance of the continental source of methanol in rainwater.

Posted on 7 October 2014 | 12:00 am


Characteristics of gravity waves resolved by ECMWF

Characteristics of gravity waves resolved by ECMWF

Atmospheric Chemistry and Physics, 14, 10483-10508, 2014

Author(s): P. Preusse, M. Ern, P. Bechtold, S. D. Eckermann, S. Kalisch, Q. T. Trinh, and M. Riese

Global model data from the European Centre for Medium-Range Weather Forecasts (ECMWF) are analyzed for resolved gravity waves (GWs). Based on fitted 3-D wave vectors of individual waves and using the ECMWF global scale background fields, backward ray tracing from 25 km altitude is performed. Different sources such as orography, convection and winter storms are identified. It is found that due to oblique propagation waves spread widely from narrow source regions. Gravity waves which originate from regions of strong convection are frequently excited around the tropopause and have in the ECMWF model low phase and group velocities as well as very long horizontal wavelengths compared to other models and to measurements. While the total amount of momentum flux for convective GWs changes little over season, GWs generated by storms and mountain waves show large day-to-day variability, which has a strong influence also on total hemispheric fluxes; from one day to the next the total hemispheric flux may increase by a factor of 3. Implications of these results for using the ECMWF model in predicting, analyzing and interpreting global GW distributions as well as implications for seamless climate prediction are discussed.

Posted on 2 October 2014 | 12:00 am


Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5

Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5

Atmospheric Chemistry and Physics, 14, 10411-10430, 2014

Author(s): Y. Wang, X. Liu, C. Hoose, and B. Wang

In order to investigate the impact of different treatments for the contact angle (α) in heterogeneous ice nucleating properties of natural dust and black carbon (BC) particles, we implement the classical-nucleation-theory-based parameterization of heterogeneous ice nucleation (Hoose et al., 2010) in the Community Atmospheric Model version 5 (CAM5) and then improve it by replacing the original single-contact-angle model with the probability-density-function-of-? (?-PDF) model to better represent the ice nucleation behavior of natural dust found in observations. We refit the classical nucleation theory (CNT) to constrain the uncertain parameters (i.e., onset ? and activation energy in the single-? model; mean contact angle and standard deviation in the ?-PDF model) using recent observation data sets for Saharan natural dust and BC (soot). We investigate the impact of the time dependence of droplet freezing on mixed-phase clouds and climate in CAM5 as well as the roles of natural dust and soot in different nucleation mechanisms. Our results show that, when compared with observations, the potential ice nuclei (IN) calculated by the ?-PDF model show better agreement than those calculated by the single-? model at warm temperatures (T; T > −20 °C). More ice crystals can form at low altitudes (with warm temperatures) simulated by the ?-PDF model than compared to the single-? model in CAM5. All of these can be attributed to different ice nucleation efficiencies among aerosol particles, with some particles having smaller contact angles (higher efficiencies) in the ?-PDF model. In the sensitivity tests with the ?-PDF model, we find that the change in mean contact angle has a larger impact on the active fraction at a given temperature than a change in standard deviation, even though the change in standard deviation can lead to a change in freezing behavior. Both the single-? and the ?-PDF model indicate that the immersion freezing of natural dust plays a more important role in the heterogeneous nucleation than that of soot in mixed-phase clouds. The new parameterizations implemented in CAM5 induce more significant aerosol indirect effects than the default parameterization.

Posted on 1 October 2014 | 12:00 am


Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

Atmospheric Chemistry and Physics, 14, 10439-10464, 2014

Author(s): W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge

Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January–February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12–C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2–963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (< 5 ppt) compared to summer (13–27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18–5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38 % of the SOA measured at SIRTA is explained by the measured concentrations of I / VOCs, with a 2% contribution by C12–C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7%, which is half of the average contribution of the traditional aromatic compounds (15%). Both approaches, which are based on in situ observations of particular I / VOCs, emphasize the importance of the intermediate volatility compounds in the SOA formation, and support previous results from chamber experiments and modeling studies. They also support the need to make systematic the IVOCs' speciated measurement during field campaigns.

Posted on 1 October 2014 | 12:00 am


How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?

How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?

Atmospheric Chemistry and Physics, 14, 10431-10438, 2014

Author(s): X. Yang, N. L. Abraham, A. T. Archibald, P. Braesicke, J. Keeble, P. J. Telford, N. J. Warwick, and J. A. Pyle

Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4–6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~ 3 ppb (present day), compared with Cly of ~ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6–8 years, depending on Cly levels.

Posted on 1 October 2014 | 12:00 am


Constraining CO2 emissions from open biomass burning by satellite observations of co-emitted species: a method and its application to wildfires in Siberia

Constraining CO2 emissions from open biomass burning by satellite observations of co-emitted species: a method and its application to wildfires in Siberia

Atmospheric Chemistry and Physics, 14, 10383-10410, 2014

Author(s): I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, M. Beekmann, J. Hadji-Lazaro, C. Clerbaux, M. O. Andreae, J. W. Kaiser, and E.-D. Schulze

A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an emission model assuming a direct relationship between the biomass burning rate (BBR) and the fire radiative power (FRP) derived from MODIS measurements. The key features of the method are (1) estimating the FRP-to-BBR conversion factors (?) for different vegetative land cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) optimal combination of the estimates of ? derived independently from satellite observations of different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire emissions directly from the FRP measurements. Values of ? for forest and grassland fires in Siberia and their uncertainties are estimated using the Infrared Atmospheric Sounding Interferometer (IASI) carbon monoxide (CO) retrievals and MODIS aerosol optical depth (AOD) measurements combined with outputs from the CHIMERE mesoscale chemistry-transport model. The constrained CO emissions are validated through comparison of the respective simulations with independent data of ground-based CO measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion factors (which are found to be in agreement with earlier published estimates obtained from local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 2012 are estimated to be in the range from 280 to 550 Tg C, with the optimal (maximum likelihood) value of 392 Tg C. Sensitivity test cases featuring different assumptions regarding the injection height and diurnal variations of emissions indicate that the derived estimates of the total CO2 emissions in Siberia are robust with respect to the modeling options (the different estimates vary within less than 15% of their magnitude). The CO2 emission estimates obtained for several years are compared with independent estimates provided by the GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia are by factors of 2.5 and 1.8 larger than the respective bottom-up estimates; these discrepancies cannot be fully explained by uncertainties in our estimates. There are also considerable differences in the spatial distribution of the different emission estimates; some of those differences have a systematic character and require further analysis.

Posted on 1 October 2014 | 12:00 am


Model-simulated trend of surface carbon monoxide for the 2001–2010 decade

Model-simulated trend of surface carbon monoxide for the 2001–2010 decade

Atmospheric Chemistry and Physics, 14, 10465-10482, 2014

Author(s): J. Yoon and A. Pozzer

We present decadal trend estimates of surface carbon monoxide (CO) simulated using the atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC; ECHAM5 and MESSy stand for fifth-generation European Centre Hamburg general circulation model and Modular Earth Submodel System, respectively) based on the emission scenarios Representative Concentration Pathways (RCP) 8.5 for anthropogenic activity and Global Fire Emissions Database (GFED) v3.1 for biomass burning from 2001 through 2010. The spatial distribution of the modeled surface CO is evaluated with monthly data from the Measurements Of Pollution In The Troposphere (MOPITT) thermal infrared product. The global means of correlation coefficient and relative bias for the decade 2001–2010 are 0.95 and ?4.29%, respectively. We also find a reasonable correlation (R = 0.78) between the trends of EMAC surface CO and full 10-year monthly records from ground-based observation (World Data Centre for Greenhouse Gases, WDCGG). Over western Europe, eastern USA, and northern Australia, the significant decreases in EMAC surface CO are estimated at ?35.5 ± 5.8, ?59.6 ± 9.1, and ?13.7 ± 9.5 ppbv decade?1, respectively. In contrast, the surface CO increases by +8.9 ± 4.8 ppbv decade?1 over southern Asia. A high correlation (R = 0.92) between the changes in EMAC-simulated surface CO and total emission flux shows that the significant regional trends are attributed to the changes in primary and direct emissions from both anthropogenic activity and biomass burning.

Posted on 1 October 2014 | 12:00 am


Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

Atmospheric Chemistry and Physics, 14, 10315-10331, 2014

Author(s): H. Matsui, M. Koike, Y. Kondo, J. D. Fast, and M. Takigawa

Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 ?m to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10–20% over northern East Asia and 20–35% over southern East Asia. A clear north–south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.

Posted on 30 September 2014 | 12:00 am


The balances of mixing ratios and segregation intensity: a case study from the field (ECHO 2003)

The balances of mixing ratios and segregation intensity: a case study from the field (ECHO 2003)

Atmospheric Chemistry and Physics, 14, 10333-10362, 2014

Author(s): R. Dlugi, M. Berger, M. Zelger, A. Hofzumahaus, F. Rohrer, F. Holland, K. Lu, and G. Kramm

An inhomogeneous mixing of reactants causes a reduction of their chemical removal compared to the homogeneously mixed case in turbulent atmospheric flows. This can be described by the intensity of segregation IS being the covariance of the mixing ratios of two species divided by the product of their means. Both terms appear in the balance equation of the mixing ratio and are discussed for the reaction between isoprene and OH for data of the field study ECHO 2003 above a deciduous forest. For most of these data, IS is negatively correlated with the fraction of mean OH mixing ratio reacting with isoprene. IS is also negatively correlated with the isoprene standard deviation. Both findings agree with model results discussed by Patton et al. (2001) and others. The correlation coefficient between OH and isoprene and, therefore, IS increases with increasing mean reaction rate. In addition, the balance equation of the covariance between isoprene and OH is applied as the theoretical framework for the analysis of the same field data. The storage term is small, and, therefore, a diagnostic equation for this covariance can be derived. The chemical reaction term Rij is dominated by the variance of isoprene times the quotient of mixing ratios of OH and isoprene. Based on these findings a new diagnostic equation for IS is formulated. Comparing different terms of this equation, IS and Rij show a relation also to the normalised isoprene standard deviation. It is shown that not only chemistry but also turbulent and convective mixing and advection – considered in a residual term – influence IS. Despite this finding, a detection of the influence of coherent eddy transport above the forest according to Katul et al. (1997) on IS fails, but a relation to the turbulent and advective transport of isoprene variance is determined. The largest values of IS are found for most unstable conditions with increasing buoyant production, confirming qualitatively model predictions by Ouwersloot et al. (2011).

Posted on 30 September 2014 | 12:00 am


A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultrahigh-resolution mass spectrometry

A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultrahigh-resolution mass spectrometry

Atmospheric Chemistry and Physics, 14, 10299-10314, 2014

Author(s): A. S. Willoughby, A. S. Wozniak, and P. G. Hatcher

The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions. The effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and therefore the associated properties and the impacts they have. Many studies have addressed the water-soluble fraction of organic aerosols and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile) of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semiquantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.

Posted on 30 September 2014 | 12:00 am


Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

Atmospheric Chemistry and Physics, 14, 10363-10381, 2014

Author(s): G. C. M. Vinken, K. F. Boersma, J. D. Maasakkers, M. Adon, and R. V. Martin

Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 15 Tg N yr?1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI). We use a state-of-science soil NOx emission inventory (Hudman et al., 2012) as a priori in the GEOS-Chem chemistry transport model to identify 11 regions where tropospheric NO2 columns are dominated by soil NOx emissions. Strong correlations between soil NOx emissions and simulated NO2 columns indicate that spatial patterns in simulated NO2 columns in these regions indeed reflect the underlying soil NOx emissions. Subsequently, we use a mass-balance approach to constrain emissions for these 11 regions on all major continents using OMI observed and GEOS-Chem simulated tropospheric NO2 columns. We find that responses of simulated NO2 columns to changing NOx emissions are suppressed over low NOx regions, and account for these non-linearities in our inversion approach. In general, our approach suggests that emissions need to be increased in most regions. Our OMI top-down soil NOx inventory amounts to 10.0 Tg N for 2005 when only constraining the 11 regions, and 12.9 Tg N when extrapolating the constraints globally. Substantial regional differences exist (ranging from ?40% to +90%), and globally our top-down inventory is 4–35% higher than the GEOS-Chem a priori (9.6 Tg N yr?1). We evaluate NO2 concentrations simulated with our new OMI top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. Although this comparison is complicated by several factors, we find an encouraging improved agreement when using the OMI top-down inventory compared to using the a priori inventory. To our knowledge, this study provides, for the first time, specific constraints on soil NOx emissions on all major continents using OMI NO2 columns. Our results rule out the low end of reported soil NOx emission estimates, and suggest that global emissions are most likely around 12.9 ± 3.9 Tg N yr?1.

Posted on 30 September 2014 | 12:00 am


Linking climate and air quality over Europe: effects of meteorology on PM2.5 concentrations

Linking climate and air quality over Europe: effects of meteorology on PM2.5 concentrations

Atmospheric Chemistry and Physics, 14, 10283-10298, 2014

Author(s): A. G. Megaritis, C. Fountoukis, P. E. Charalampidis, H. A. C. Denier van der Gon, C. Pilinis, and S. N. Pandis

The effects of various meteorological parameters such as temperature, wind speed, absolute humidity, precipitation and mixing height on PM2.5 concentrations over Europe were examined using a three-dimensional chemical transport model, PMCAMx-2008. Our simulations covered three periods, representative of different seasons (summer, winter, and fall). PM2.5 appears to be more sensitive to temperature changes compared to the other meteorological parameters in all seasons.

PM2.5 generally decreases as temperature increases, although the predicted changes vary significantly in space and time, ranging from ?700 ng m?3 K?1 (?8% K?1) to 300 ng m?3 K?1 (7% K?1). The predicted decreases of PM2.5 are mainly due to evaporation of ammonium nitrate, while the higher biogenic emissions and the accelerated gas-phase reaction rates increase the production of organic aerosol (OA) and sulfate, having the opposite effect on PM2.5. The predicted responses of PM2.5 to absolute humidity are also quite variable, ranging from ?130 ng m?3 %?1 (?1.6% %?1) to 160 ng m?3 %?1 (1.6% %?1) dominated mainly by changes in inorganic PM2.5 species. An increase in absolute humidity favors the partitioning of nitrate to the aerosol phase and increases the average PM2.5 during summer and fall. Decreases in sulfate and sea salt levels govern the average PM2.5 response to humidity during winter. A decrease of wind speed (keeping the emissions constant) increases all PM2.5 species (on average 40 ng m?3 %?1) due to changes in dispersion and dry deposition. The wind speed effects on sea salt emissions are significant for PM2.5 concentrations over water and in coastal areas. Increases in precipitation have a negative effect on PM2.5 (decreases up to 110 ng m?3 %?1) in all periods due to increases in wet deposition of PM2.5 species and their gas precursors. Changes in mixing height have the smallest effects (up to 35 ng m?3 %?1) on PM2.5 .

Regarding the relative importance of each of the meteorological parameters in a changed future climate, the projected changes in precipitation are expected to have the largest impact on PM2.5 levels during all periods (changes up to 2 ?g m?3 in the fall). The expected effects in future PM2.5 levels due to wind speed changes are similar in all seasons and quite close to those resulting from future precipitation changes (up to 1.4 ?g m?3). The expected increases in absolute humidity in the future can lead to large changes in PM2.5 levels (increases up to 2 ?g m?3) mainly in the fall due to changes in particulate nitrate levels. Despite the high sensitivity of PM2.5 levels to temperature, the small expected increases of temperature in the future will lead to modest PM2.5 changes and will not dominate the overall change.

Posted on 29 September 2014 | 12:00 am


Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong

Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong

Atmospheric Chemistry and Physics, 14, 10267-10282, 2014

Author(s): J. W. Meng, M. C. Yeung, Y. J. Li, B. Y. L. Lee, and C. K. Chan

The cloud condensation nuclei (CCN) properties of atmospheric aerosols were measured on 1–30 May 2011 at the HKUST (Hong Kong University of Science and Technology) Supersite, a coastal site in Hong Kong. Size-resolved CCN activation curves, the ratio of number concentration of CCN (NCCN) to aerosol concentration (NCN) as a function of particle size, were obtained at supersaturation (SS) = 0.15, 0.35, 0.50, and 0.70% using a DMT (Droplet Measurement Technologies) CCN counter (CCNc) and a TSI scanning mobility particle sizer (SMPS). The mean bulk size-integrated NCCN ranged from ~500 cm?3 at SS = 0.15% to ~2100 cm?3 at SS = 0.70%, and the mean bulk NCCN / NCN ratio ranged from 0.16 at SS = 0.15% to 0.65 at SS = 0.70%. The average critical mobility diameters (D50) at SS = 0.15, 0.35, 0.50, and 0.70% were 116, 67, 56, and 46 nm, respectively. The corresponding average hygroscopic parameters (κCCN) were 0.39, 0.36, 0.31, and 0.28. The decrease in κCCN can be attributed to the increase in organic to inorganic volume ratio as particle size decreases, as measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The κCCN correlates reasonably well with κAMS_SR based on size-resolved AMS measurements: κAMS_SR = κorg × forg + κinorg × finorg, where forg and finorg are the organic and inorganic volume fractions, respectively, κorg = 0.1 and κinorg = 0.6, with a R2 of 0.51.

In closure analysis, NCCN was estimated by integrating the measured size-resolved NCN for particles larger than D50 derived from ? assuming internal mixing state. Estimates using κAMS_SR show that the measured and predicted NCCN were generally within 10% of each other at all four SS. The deviation increased to 26% when κAMS was calculated from bulk PM1 AMS measurements of particles because PM1 was dominated by particles of 200 to 500 nm in diameter, which had a larger inorganic fraction than those of D50 (particle diameter < 200 nm). A constant ? = 0.33 (the average value of κAMS_SR over the course of campaign) was found to give an NCCN prediction within 12% of the actual measured values. We also compared NCCN estimates based on the measured average D50 and the average size-resolved CCN activation ratio to examine the relative importance of hygroscopicity and mixing state. NCCN appears to be relatively more sensitive to the mixing state and hygroscopicity at a high SS = 0.70% and a low SS = 0.15%, respectively.

Posted on 26 September 2014 | 12:00 am


Modeling analysis of the seasonal characteristics of haze formation in Beijing

Modeling analysis of the seasonal characteristics of haze formation in Beijing

Atmospheric Chemistry and Physics, 14, 10231-10248, 2014

Author(s): X. Han, M. Zhang, J. Gao, S. Wang, and F. Chai

The air quality modeling system RAMS-CMAQ (Regional Atmospheric Modeling System–Community Multiscale Air Quality), coupled with an aerosol optical property scheme, was applied to simulate the meteorological field, major aerosol components (sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt), and surface visibility over the North China Plain (NCP) in 2011. The modeled results in February and July 2011 were selected and analyzed to obtain an in-depth understanding of the haze formation mechanism in Beijing for different seasons. The simulation results showed that the visibility was below 10 km for most regions of the NCP, and dropped to less than 5 km over the megacities of Beijing and Tianjin, the whole of Hebei Province, and the northwest part of Shandong Province during pollution episodes in February and July. The heavy mass concentration of PM2.5 ranged from 120 to 300 ?g m?3 and was concentrated in the areas with low visibility. The haze formation mechanism in Beijing in winter was different from that in summer. The mass concentration of PM2.5 was higher, and the components more complicated, in winter. While the mass concentration of PM2.5 in summer was lower than that in winter, the mass concentrations of hygroscopic inorganic salts were comparable with those in winter, and the relative humidity was, as expected, higher. Therefore, the water uptake of hygroscopic aerosols played a key role in summer. Moreover, the analysis showed that the influence of the PM2.5 mass burden on visibility was very weak when its value was larger than 100 ?g m?3. Only when the mass burden of PM2.5 decreased to a certain threshold interval did the visibility increase rapidly. This indicates that, when emission reduction measures are taken to control haze occurrence, the mass burden of PM2.5 must be cut to below this threshold interval. The relationship between the threshold of haze occurrence and the relative humidity in Beijing was fitted by an exponential function, and the resulting fitting curves could provide a new theoretical basis to understand and control haze formation in Beijing.

Posted on 25 September 2014 | 12:00 am


Horizontal distributions of aerosol constituents and their mixing states in Antarctica during the JASE traverse

Horizontal distributions of aerosol constituents and their mixing states in Antarctica during the JASE traverse

Atmospheric Chemistry and Physics, 14, 10211-10230, 2014

Author(s): K. Hara, F. Nakazawa, S. Fujita, K. Fukui, H. Enomoto, and S. Sugiyama

Measurements of aerosol number concentrations and direct aerosol sampling were conducted on continental Antarctica during the traverse of the Japanese–Swedish joint Antarctic expedition (JASE) from 14 November 2007 until 24 January 2008. Aerosol concentrations in background conditions decreased gradually with latitude in inland regions during the traverse. The lowest aerosol number concentrations were 160 L?1 in Dp > 0.3 ?m, and 0.5 L?1 in Dp 2 ?m. In contrast, aerosol concentrations reached 3278 L?1 in Dp > 0.3 ?m, and 215 L?1 in Dp > 2 ?m under strong wind conditions. The estimated aerosol mass concentrations were 0.04–5.7 ?g m?3. Single particle analysis of aerosol particles collected during the JASE traverse was conducted using a scanning electron microscope equipped with an energy dispersive x ray spectrometer. Major aerosol constituents were sulfates in fine mode, and sulfate, sea salts, modified sea salts, and fractionated sea salts in coarse mode. K-rich sulfates, Mg-rich sulfate, Ca-rich sulfates, and minerals were identified as minor aerosol constituents. Horizontal features of Cl / Na ratios imply that sea-salt modification (i.e. Cl loss) occurred on the Antarctic continent during the summer. Most sea-salt particles in the continental region near the coast were modified with acidic sulfur species such as H2SO4 and CH3SO3H. By contrast, acidic species other than the acidic sulfur species (likely HNO3) contributed markedly to sea-salt modification in inland areas during the traverse. Mg-rich sea-salt particles and Mg-free sea-salt particles were present in coarse and fine modes from the coast to inland areas. These sea-salt particles might be associated with sea-salt fractionation on the snow surface of continental Antarctica.

Posted on 25 September 2014 | 12:00 am


Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production

Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production

Atmospheric Chemistry and Physics, 14, 10249-10265, 2014

Author(s): J. F. Peng, M. Hu, Z. B. Wang, X. F. Huang, P. Kumar, Z. J. Wu, S. Guo, D. L. Yue, D. J. Shang, Z. Zheng, and L. Y. He

Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effects on regional air quality, haze and human health. In this study, we conducted 15 different field measurement campaigns between 2007 and 2011 at 13 individual sites in China, including five urban sites, four regional sites, three coastal/background sites and one ship cruise measurement along eastern coastline of China. Size resolved particles were measured in the 15–600 nm size range. The median particle number concentrations (PNCs) were found to vary in the range of 1.1?2.2 × 104 cm?3 at urban sites, 0.8?1.5 × 104 cm?3 at regional sites, 0.4?0.6 × 104 cm?3 at coastal/background sites, and 0.5 × 104 cm?3 during cruise measurement. Peak diameters at each of these sites varied greatly from 24 to 115 nm. Particles in the 15–25 nm (nucleation mode), 25–100 nm (Aitken mode) and 100–600 nm (accumulation mode) range showed different characteristics at each sites, indicating the features of primary emissions and secondary formation in these diversified atmospheric environments. Diurnal variations show a build-up of accumulation mode particles belt at regional sites, suggesting the contribution of regional secondary aerosol pollution. Frequencies of new particle formation (NPF) events were much higher at urban and regional sites than at coastal sites and during cruise measurement. The average growth rates (GRs) of nucleation mode particles were 8.0–10.9 nm h?1 at urban sites, 7.4–13.6 nm h?1 at regional sites and 2.8–7.5 nm h?1 at coastal sites and during cruise measurement. The high gaseous precursors and strong oxidation at urban and regional sites not only favored the formation of particles, but also accelerated the growth rate of the nucleation mode particles. No significant difference in condensation sink (CS) during NPF days were observed among different site types, suggesting that the NPF events in background areas were more influenced by the pollutant transport. In addition, average contributions of NPF events to potential cloud condensation nuclei (CCN) at 0.2% super-saturation in the afternoon of all sampling days were calculated as 11% and 6% at urban sites and regional sites, respectively. On the other hand, NPF events at coastal sites and during cruise measurement had little impact on potential production of CCN. This study provides a large data set of particle size distribution in diversified atmosphere of China, improving our general understanding of emission, secondary formation, new particle formation and corresponding CCN activity of submicron aerosols in Chinese environments.

Posted on 25 September 2014 | 12:00 am


On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER

On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER

Atmospheric Chemistry and Physics, 14, 10193-10210, 2014

Author(s): S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt

The mesospheric OH Meinel emissions are subject of many theoretical and observational studies devoted to this part of the atmosphere. Depending on the initial vibrational level of excitation the altitude of the considered OH Meinel emission is systematically shifted, which has important implications for the intercomparison of different studies considering different transition bands. Previous model studies suggest that these vertical shifts are essentially caused by the process of collisional quenching with atomic oxygen. Following this hypothesis, a recent study found experimental evidence of a coherent seasonality at tropical latitudes between vertical shifts of different OH Meinel bands and changes in atomic oxygen concentrations. Despite the consistent finding of the above mentioned hypothesis, it cannot be excluded that the actual temporal variability of the vertical shifts between different OH Meinel bands may in addition be controlled or even dominated by other processes. It remains an open question whether the observed temporal evolution is indeed mainly controlled by the modulation of the collisional quenching process with atomic oxygen. By means of a sensitivity study which employs a quenching model to simulations made with the SD-WACCM4 chemistry climate model, we aim at assessing this question. From this study we find that the observed seasonality of vertical OH Meinel shifts is only partially controlled by temporal changes in atomic oxygen concentrations, while molecular oxygen has another noticeable impact on the vertical OH Meinel shifts. This in particular becomes evident for the diurnal variability of vertical OH Meinel shifts, which reveal only a poor correlation with the atomic oxygen species. Furthermore, changes in the H + O3 source gases provide another mechanism that can potentially affect the diurnal variability in addition. By comparison with limb radiance observations from the SABER/TIMED satellite this provides an explanation for the less evident diurnal response between changes in O concentrations and vertical OH Meinel shifts. On the other hand, at seasonal timescales the coherency between both quantities is again evident in SABER/TIMED but less pronounced compared to our model simulations.

Posted on 24 September 2014 | 12:00 am


Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate–aerosol model

Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate–aerosol model

Atmospheric Chemistry and Physics, 14, 10177-10192, 2014

Author(s): S. V. Henriksson, J.-P. Pietikäinen, A.-P. Hyvärinen, P. Räisänen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O'Donnell, L. Backman, Z. Klimont, and A. Laaksonen

Climate–aerosol interactions in India are studied by employing the global climate–aerosol model ECHAM5-HAM and the GAINS inventory for anthropogenic aerosol emissions. Model validation is done for black carbon surface concentrations in Mukteshwar and for features of the monsoon circulation. Seasonal cycles and spatial distributions of radiative forcing and the temperature and rainfall responses are presented for different model setups. While total aerosol radiative forcing is strongest in the summer, anthropogenic forcing is considerably stronger in winter than in summer. Local seasonal temperature anomalies caused by aerosols are mostly negative with some exceptions, e.g., parts of northern India in March–May. Rainfall increases due to the elevated heat pump (EHP) mechanism and decreases due to solar dimming mechanisms (SDMs) and the relative strengths of these effects during different seasons and for different model setups are studied. Aerosol light absorption does increase rainfall in northern India, but effects due to solar dimming and circulation work to cancel the increase. The total aerosol effect on rainfall is negative for northern India in the months of June–August, but during March–May the effect is positive for most model setups. These differences between responses in different seasons might help converge the ongoing debate on the EHPs and SDMs. Due to the complexity of the problem and known or potential sources for error and bias, the results should be interpreted cautiously as they are completely dependent on how realistic the model is. Aerosol–rainfall correlations and anticorrelations are shown not to be a reliable sole argument for deducing causality.

Posted on 24 September 2014 | 12:00 am


Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions

Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions

Atmospheric Chemistry and Physics, 14, 10163-10176, 2014

Author(s): L. Chen, H. H. Wang, J. F. Liu, Y. D. Tong, L. B. Ou, W. Zhang, D. Hu, C. Chen, and X. J. Wang

Global policies that regulate anthropogenic mercury emissions to the environment require quantitative and comprehensive source–receptor relationships for mercury emissions, transport and deposition among major continental regions. In this study, we use the GEOS-Chem global chemical transport model to establish source–receptor relationships among 11 major continental regions worldwide. Source–receptor relationships for surface mercury concentrations (SMC) show that some regions (e.g., East Asia, the Indian subcontinent, and Europe) should be responsible for their local surface Hg(II) and Hg(P) concentrations due to near-field transport and deposition contributions from their local anthropogenic emissions (up to 64 and 71% for Hg(II) and Hg(P), respectively, over East Asia). We define the region of primary influence (RPI) and the region of secondary influence (RSI) to establish intercontinental influence patterns. Results indicate that East Asia is the SMC RPI for almost all other regions, while Europe, Russia, and the Indian subcontinent also make some contributions to SMC over some receptor regions because they are dominant RSI source regions. Source–receptor relationships for mercury deposition show that approximately 16 and 17% of dry and wet deposition, respectively, over North America originate from East Asia, indicating that transpacific transport of East Asian emissions is the major foreign source of mercury deposition in North America. Europe, Southeast Asia, and the Indian subcontinent are also important mercury deposition sources for some receptor regions because they are the dominant RSIs. We also quantify seasonal variation on mercury deposition contributions over other regions from East Asia. Results show that mercury deposition (including dry and wet) contributions from East Asia over the Northern Hemisphere receptor regions (e.g., North America, Europe, Russia, the Middle East, and Middle Asia) vary seasonally, with the maximum values in summer and minimum values in winter. The opposite seasonal pattern occurs on mercury dry deposition contributions over Southeast Asia and the Indian subcontinent.

Posted on 24 September 2014 | 12:00 am


Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations

Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations

Atmospheric Chemistry and Physics, 14, 10103-10118, 2014

Author(s): T. Eidhammer, H. Morrison, A. Bansemer, A. Gettelman, and A. J. Heymsfield

Detailed measurements of ice crystals in cirrus clouds were used to compare with results from the Community Atmospheric Model Version 5 (CAM5) global climate model. The observations are from two different field campaigns with contrasting conditions: Atmospheric Radiation Measurements Spring Cloud Intensive Operational Period in 2000 (ARM-IOP), which was characterized primarily by midlatitude frontal clouds and cirrus, and Tropical Composition, Cloud and Climate Coupling (TC4), which was dominated by anvil cirrus. Results show that the model typically overestimates the slope parameter of the exponential size distributions of cloud ice and snow, while the variation with temperature (height) is comparable. The model also overestimates the ice/snow number concentration (0th moment of the size distribution) and underestimates higher moments (2nd through 5th), but compares well with observations for the 1st moment. Overall the model shows better agreement with observations for TC4 than for ARM-IOP in regards to the moments. The mass-weighted terminal fall speed is lower in the model compared to observations for both ARM-IOP and TC4, which is partly due to the overestimation of the size distribution slope parameter. Sensitivity tests with modification of the threshold size for cloud ice to snow autoconversion (Dcs) do not show noticeable improvement in modeled moments, slope parameter and mass weighed fall speed compared to observations. Further, there is considerable sensitivity of the cloud radiative forcing to Dcs, consistent with previous studies, but no value of Dcs improves modeled cloud radiative forcing compared to measurements. Since the autoconversion of cloud ice to snow using the threshold size Dcs has little physical basis, future improvement to combine cloud ice and snow into a single category, eliminating the need for autoconversion, is suggested.

Posted on 23 September 2014 | 12:00 am


Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany

Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany

Atmospheric Chemistry and Physics, 14, 10145-10162, 2014

Author(s): L. Poulain, W. Birmili, F. Canonaco, M. Crippa, Z. J. Wu, S. Nordmann, G. Spindler, A. S. H. Prévôt, A. Wiedensohler, and H. Herrmann

In the fine-particle mode (aerodynamic diameter < 1 ?m) non-volatile material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyzes non-volatile particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle-size spectrometer (3–800 nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May–June 2008 as well as February–March 2009. As a basic result, we detected average non-volatile particle–volume fractions of 11 ± 3% (2008) and 17 ± 8% (2009). In both periods, BC was in close linear correlation with the non-volatile fraction, but not sufficient to quantitatively explain the non-volatile particle mass concentration. Based on the assumption that BC is not altered by the heating process, the non-volatile particle mass fraction could be explained by the sum of black carbon (47% in summer, 59% in winter) and a non-volatile organic contribution estimated as part of the low-volatility oxygenated organic aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that LV-OOA was more volatile in summer (May–June 2008) than in winter (February–March 2009) which was linked to a difference in oxidation levels (lower in summer). Although carbonaceous compounds dominated the sub-?m non-volatile particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however from the carbonaceous particles by a characteristic particle volume–size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements.

Posted on 23 September 2014 | 12:00 am


Summertime tropospheric ozone assessment over the Mediterranean region using the thermal infrared IASI/MetOp sounder and the WRF-Chem model

Summertime tropospheric ozone assessment over the Mediterranean region using the thermal infrared IASI/MetOp sounder and the WRF-Chem model

Atmospheric Chemistry and Physics, 14, 10119-10131, 2014

Author(s): S. Safieddine, A. Boynard, P.-F. Coheur, D. Hurtmans, G. Pfister, B. Quennehen, J. L. Thomas, J.-C. Raut, K. S. Law, Z. Klimont, J. Hadji-Lazaro, M. George, and C. Clerbaux

Over the Mediterranean region, elevated tropospheric ozone (O3) values are recorded, especially in summer. We use the thermal Infrared Atmospheric Sounding Interferometer (IASI) and the Weather Research and Forecasting Model with Chemistry (WRF-Chem) to understand and interpret the factors and emission sources responsible for the high O3 concentrations observed in the Mediterranean troposphere. Six years (2008–2013) of IASI data have been analyzed and results show consistent maxima during summer, with an increase of up to 22% in the [0–8] km O3 column in the eastern part of the basin compared to the middle of the basin. We focus on summer 2010 to investigate the processes that contribute to these summer maxima. Using two modeled O3 tracers (inflow to the model domain and local anthropogenic emissions), we show that, between the surface and 2 km, O3 is mostly formed from anthropogenic emissions, while above 4 km it is mostly transported from outside the domain or from stratospheric origins. Evidence of stratosphere-to-troposphere exchange (STE) events in the eastern part of the basin is shown, and corresponds to a low water vapor mixing ratio and high potential vorticity.

Posted on 23 September 2014 | 12:00 am


Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

Atmospheric Chemistry and Physics, 14, 10133-10144, 2014

Author(s): F. Jiang, H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa

Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002–2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2–12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

Posted on 23 September 2014 | 12:00 am


Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

Atmospheric Chemistry and Physics, 14, 10085-10102, 2014

Author(s): C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière

The CANOPEE project aims to better understand the biosphere–atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, Quercus pubescens Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mg m?2 h1. Net isoprene normalized flux (at 30 °C, 1000 ?mol quanta m?2 s−1) was estimated at 7.4 mg m?2 h?1. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mg m?2 h?1, whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit.

The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings proposing weak production yields of MVK and MACR, in remote forest regions where the NOx concentrations are low. In-canopy chemical oxidation of isoprene was found to be weak and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy.

Posted on 22 September 2014 | 12:00 am


Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime

Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime

Atmospheric Chemistry and Physics, 14, 10061-10084, 2014

Author(s): D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter

Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC–AMS–PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method).

Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core – Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10%, respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W, SE and E air masses, the BCsf mass fractions ranged from 16 ± 6%, 24 ± 10% and 39 ± 14%, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC–AMS–PMF multiple linear regression method (BC–AMS–PMF : SP2 ratio = 1.05, r2 = 0.80) over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed absorption Ångström exponent (αwb) had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.

Posted on 22 September 2014 | 12:00 am


Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

Atmospheric Chemistry and Physics, 14, 10013-10060, 2014

Author(s): J. D. Fast, J. Allan, R. Bahreini, J. Craven, L. Emmons, R. Ferrare, P. L. Hayes, A. Hodzic, J. Holloway, C. Hostetler, J. L. Jimenez, H. Jonsson, S. Liu, Y. Liu, A. Metcalf, A. Middlebrook, J. Nowak, M. Pekour, A. Perring, L. Russell, A. Sedlacek, J. Seinfeld, A. Setyan, J. Shilling, M. Shrivastava, S. Springston, C. Song, R. Subramanian, J. W. Taylor, V. Vinoj, Q. Yang, R. A. Zaveri, and Q. Zhang

The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The overall objective of the field campaigns was to obtain data needed to better understand processes that affect both climate and air quality, including emission assessments, transport and chemical aging of aerosols, aerosol radiative effects. Simulations were performed that examined the sensitivity of aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. We found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics quantifying the differences between observed and simulated quantities. Comparisons with lidar and in situ measurements indicate that long-range transport of aerosols from the global model was likely too high in the free troposphere even though their concentrations were relatively low. This bias led to an over-prediction in aerosol optical depth by as much as a factor of 2 that offset the under-predictions of boundary-layer extinction resulting primarily from local emissions. Lowering the boundary conditions of aerosol concentrations by 50% greatly reduced the bias in simulated aerosol optical depth for all regions of California. This study shows that quantifying regional-scale variations in aerosol radiative forcing and determining the relative role of emissions from local and distant sources is challenging during `clean' conditions and that a wide array of measurements are needed to ensure model predictions are correct for the right reasons. In this regard, the combined CalNex and CARES data sets are an ideal test bed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes.

Posted on 22 September 2014 | 12:00 am





Other notes:



 Information about this site:


 
The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.
 
To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!
Citation:
http://www.internetchemistry.com/rss/atmospheric-chemistry.php
Keywords:
Chronological list of recent articles on Chemistry, Atmospheric Chemistry, Atmospheric Chemistry and Physics.
Update:
28.09.2013


Internetchemistry ChemLin © 1996 - 2013 A. J.