[Sitemap] [Contact] [Imprint] Deutsche Version Search site 

Atmospheric Chemistry and Physics - Current Research Articles



Current research articles: Atmospheric Chemistry

The author- or copyrights of the listed research articles below are held by the respective authors or site operators, who are also responsible for the content of the presentations.

More current articles from Chemistry Journals same topic: see the navigation menu on the left.

To list your article here please contact us by eMail.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!




On this page considered journals:



Atmospheric Chemistry and Physics - published by Copernicus Publications

ACP is an international scientific open access journal dedicated to the publication and public discussion of high quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere and mesosphere.




Current articles of the journal:



Variability of NOx in the polar middle atmosphere from October 2003 to March 2004: vertical transport vs. local production by energetic particles

Variability of NOx in the polar middle atmosphere from October 2003 to March 2004: vertical transport vs. local production by energetic particles

Atmospheric Chemistry and Physics, 14, 7681-7692, 2014

Author(s): M. Sinnhuber, B. Funke, T. von Clarmann, M. Lopez-Puertas, G. P. Stiller, and A. Seppälä

We use NO, NO2 and CO from MIPAS/ENVISAT to investigate the impact of energetic particle precipitation onto the NOx budget from the stratosphere to the lower mesosphere in the period from October 2003 to March 2004, a time of high solar and geomagnetic activity. We find that in the winter hemisphere the indirect effect of auroral electron precipitation due to downwelling of upper mesospheric/lower thermospheric air into the stratosphere prevails. Its effect exceeds even the direct impact of the very large solar proton event in October/November 2003 by nearly 1 order of magnitude. Correlations of NOx and CO show that the unprecedented high NOx values observed in the Northern Hemisphere lower mesosphere and upper stratosphere in late January and early February are fully consistent with transport from the upper mesosphere/lower thermosphere and subsequent mixing at lower altitudes. In the polar summer Southern Hemisphere, we observed an enhanced variability of NO and NO2 on days with enhanced geomagnetic activity, but this seems to indicate enhanced instrument noise rather than a direct increase due to electron precipitation. A direct effect of electron precipitation onto NOx can not be ruled out, but, if any, it is lower than 3 ppbv in the altitude range 40–56 km and lower than 6 ppbv in the altitude range 56–64 km. An additional significant source of NOx due to local production by precipitating electrons below 70 km exceeding several parts per billion as discussed in previous publications appears unlikely.

Posted on 31 July 2014 | 12:00 am


Analysis of the effect of water activity on ice formation using a new thermodynamic framework

Analysis of the effect of water activity on ice formation using a new thermodynamic framework

Atmospheric Chemistry and Physics, 14, 7665-7680, 2014

Author(s): D. Barahona

In this work a new thermodynamic framework is developed and used to investigate the effect of water activity on the formation of ice within supercooled droplets. The new framework is based on a novel concept where the interface is assumed to be made of liquid molecules "trapped" by the solid matrix. It also accounts for the change in the composition of the liquid phase upon nucleation. Using this framework, new expressions are developed for the critical ice germ size and the nucleation work with explicit dependencies on temperature and water activity. However unlike previous approaches, the new model does not depend on the interfacial tension between liquid and ice. The thermodynamic framework is introduced within classical nucleation theory to study the effect of water activity on the ice nucleation rate. Comparison against experimental results shows that the new approach is able to reproduce the observed effect of water activity on the nucleation rate and the freezing temperature. It allows for the first time a phenomenological derivation of the constant shift in water activity between melting and nucleation. The new framework offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

Posted on 30 July 2014 | 12:00 am


Daily ozone cycle in the stratosphere: global, regional and seasonal behaviour modelled with the Whole Atmosphere Community Climate Model

Daily ozone cycle in the stratosphere: global, regional and seasonal behaviour modelled with the Whole Atmosphere Community Climate Model

Atmospheric Chemistry and Physics, 14, 7645-7663, 2014

Author(s): A. Schanz, K. Hocke, and N. Kämpfer

The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3 and 5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic-scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.

Posted on 30 July 2014 | 12:00 am


An alternative method for estimating hygroscopic growth factor of aerosol light-scattering coefficient: a case study in an urban area of Guangzhou, South China

An alternative method for estimating hygroscopic growth factor of aerosol light-scattering coefficient: a case study in an urban area of Guangzhou, South China

Atmospheric Chemistry and Physics, 14, 7631-7644, 2014

Author(s): Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang

A method was developed to estimate hygroscopic growth factor (f(RH)) of aerosol light-scattering coefficient (bsp), making use of the measured size- and chemically resolved aerosol samples. In this method, chemical composition of the measured aerosol samples were first reconstructed using the equilibrium model ISORROPIA II. The reconstructed chemical composition, which varies with relative humidity (RH), was then employed to calculate bsp and hygroscopic growth factor of bsp (fsp(RH)) using the Mie model. Furthermore, the calculated fsp(RH) was fitted with an empirical curve. To evaluate the applicability of fsp(RH), the curve of fsp(RH) was used to correct the long-term records of the measured bsp from the values under comparative dry conditions to the ones under ambient RH conditions. Compared with the original bsp data, the fsp(RH)-corrected bsp had a higher linear correlation with, and a smaller discrepancy from, the bsp derived directly from visibility and absorption measurements. The fsp(RH) determined here was further compared with that reported in previous studies. The method described in this manuscript provides an alternative approach to derive credible fsp(RH) with high accuracy and has many potential applications in aerosol-related research.

Posted on 30 July 2014 | 12:00 am


Comparison of surface and column measurements of aerosol scattering properties over the western North Atlantic Ocean at Bermuda

Comparison of surface and column measurements of aerosol scattering properties over the western North Atlantic Ocean at Bermuda

Atmospheric Chemistry and Physics, 14, 7617-7629, 2014

Author(s): R. P. Aryal, K. J. Voss, P. A. Terman, W. C. Keene, J. L. Moody, E. J. Welton, and B. N. Holben

Light scattering by size-resolved aerosols in near-surface air at Tudor Hill, Bermuda, was measured between January and June 2009. Vertical distributions of aerosol backscattering and column-averaged aerosol optical properties were characterized in parallel with a micro-pulse lidar (MPL) and an automated sun–sky radiometer. Comparisons were made between extensive aerosol parameters in the column, such as the lidar-retrieved extinction at 400 m and the aerosol optical depth (AOD), and scattering was measured with a surface nephelometer. Comparisons were also made for intensive parameters such as the Ångström exponent and calculations using AERONET(Aerosol Robotic Network)-derived aerosol physical parameters (size distribution, index of refraction) and Mie theory, and the ratio of submicron scattering to total scattering for size-segregated nephelometer measurements. In these comparisons the r2 was generally around 0.50. Data were also evaluated based on back trajectories. The correlation between surface scattering and lidar extinction was highest for flows when the surface scattering was dominated by smaller particles and the flow had a longer footprint over land then over the ocean. The correlation of AOD with surface scatter was similar for all flow regimes. There was also no clear dependence of the atmospheric lapse rate, as determined from a nearby radiosonde station, on flow regime. The Ångström exponent for most flow regimes was 0.9–1.0, but for the case of air originating from North America, but with significant time over the ocean, the Ångström exponent was 0.57 ± 0.18. The submicron fraction of aerosol near the surface (Rsub-surf) was significantly greater for the flows from land (0.66 ± 0.11) than for the flows which spent more time over the ocean (0.40 ± 0.05). When comparing Rsub-surf and the column-integrated submicron scattering fraction, Rsub-col, the correlation was similar, r2 = 0.50, but Rsub-surf was generally less than Rsub-col, indicating more large particles contributing to light scattering at the surface, contrary to conditions over continents and for polluted continental transport over the ocean. In general, though, the marginal correlations indicate that the column optical properties are weakly correlated with the surface optical measurements. Thus, if it is desired to associate aerosol chemical/physical properties with their optical properties, it is best to use optical and chemical/physical measurements with both collected at the surface or both collected in the column.

Posted on 30 July 2014 | 12:00 am


Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

Atmospheric Chemistry and Physics, 14, 7585-7599, 2014

Author(s): T. R. Dallmann, T. B. Onasch, T. W. Kirchstetter, D. R. Worton, E. C. Fortner, S. C. Herndon, E. C. Wood, J. P. Franklin, D. R. Worsnop, A. H. Goldstein, and R. A. Harley

Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

Posted on 29 July 2014 | 12:00 am


3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions

3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions

Atmospheric Chemistry and Physics, 14, 7573-7583, 2014

Author(s): P. Reutter, J. Trentmann, A. Seifert, P. Neis, H. Su, D. Chang, M. Herzog, H. Wernli, M. O. Andreae, and U. Pöschl

Dynamical and microphysical processes in pyroconvective clouds in mid-latitude conditions are investigated using idealized three-dimensional simulations with the Active Tracer High resolution Atmospheric Model (ATHAM). A state-of-the-art two-moment microphysical scheme building upon a realistic parameterization of cloud condensation nuclei (CCN) activation has been implemented in order to study the influence of aerosol concentration on cloud development. The results show that aerosol concentration influences the formation of precipitation. For low aerosol concentrations (NCN = 200 cm−3), rain droplets are rapidly formed by autoconversion of cloud droplets. This also triggers the formation of large graupel and hail particles, resulting in an early onset of precipitation. With increasing aerosol concentration (NCN = 1000 cm?3 and NCN = 20 000 cm?3) the formation of rain droplets is delayed due to more but smaller cloud droplets. Therefore, the formation of ice crystals and snowflakes becomes more important for the eventual formation of graupel and hail, which is delayed at higher aerosol concentrations. This results in a delay of the onset of precipitation and a reduction of its intensity with increasing aerosol concentration. This study is the first detailed investigation of the interaction between cloud microphysics and the dynamics of a pyroconvective cloud using the combination of a high-resolution atmospheric model and a detailed microphysical scheme.

Posted on 29 July 2014 | 12:00 am


The fate of NOx emissions due to nocturnal oxidation at high latitudes: 1-D simulations and sensitivity experiments

The fate of NOx emissions due to nocturnal oxidation at high latitudes: 1-D simulations and sensitivity experiments

Atmospheric Chemistry and Physics, 14, 7601-7616, 2014

Author(s): P. L. Joyce, R. von Glasow, and W. R. Simpson

The fate of nitrogen oxide pollution during high-latitude winter is controlled by reactions of dinitrogen pentoxide (N2O5) and is highly affected by the competition between heterogeneous atmospheric reactions and deposition to the snowpack. MISTRA (MIcrophysical STRAtus), a 1-D photochemical model, simulated an urban pollution plume from Fairbanks, Alaska to investigate this competition of N2O5 reactions and explore sensitivity to model parameters. It was found that dry deposition of N2O5 made up a significant fraction of N2O5 loss near the snowpack, but reactions on aerosol particles dominated loss of N2O5 over the integrated atmospheric column. Sensitivity experiments found the fate of NOx emissions were most sensitive to NO emission flux, photolysis rates, and ambient temperature. The results indicate a strong sensitivity to urban area density, season and clouds, and temperature, implying a strong sensitivity of the results to urban planning and climate change. Results suggest that secondary formation of particulate (PM2.5) nitrate in the Fairbanks downtown area does not contribute significant mass to the total PM2.5 concentration, but appreciable amounts are formed downwind of downtown due to nocturnal NOx oxidation and subsequent reaction with ammonia on aerosol particles.

Posted on 29 July 2014 | 12:00 am


Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN\hack{<br/>} concentration prediction

Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN\hack{
} concentration prediction


Atmospheric Chemistry and Physics, 14, 7559-7572, 2014

Author(s): G. P. Almeida, J. Brito, C. A. Morales, M. F. Andrade, and P. Artaxo

Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures.

Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 ?g m?3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm?3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm?3 at SS = 0.23% and SS = 1.13%, respectively.

Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter.

Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN.

Introducing a size-dependent chemical composition based on filter measurements from previous campaigns has considerably improved simulated values for NCCN (average overprediction error 14.8 ± 38.6% at 0.23% supersaturation and 3.6 ± 21.6% at 1.13% supersaturation). This study provides the first insight on aerosol real-time composition and hygroscopicity at a site strongly impacted by emissions of a unique vehicular fleet due to the extensive biofuel usage.

Posted on 29 July 2014 | 12:00 am


The complex response of Arctic aerosol to sea-ice retreat

The complex response of Arctic aerosol to sea-ice retreat

Atmospheric Chemistry and Physics, 14, 7543-7557, 2014

Author(s): J. Browse, K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, and C. Leck

Loss of summertime Arctic sea ice will lead to a large increase in the emission of aerosols and precursor gases from the ocean surface. It has been suggested that these enhanced emissions will exert substantial aerosol radiative forcings, dominated by the indirect effect of aerosol on clouds. Here, we investigate the potential for these indirect forcings using a global aerosol microphysics model evaluated against aerosol observations from the Arctic Summer Cloud Ocean Study (ASCOS) campaign to examine the response of Arctic cloud condensation nuclei (CCN) to sea-ice retreat. In response to a complete loss of summer ice, we find that north of 70° N emission fluxes of sea salt, marine primary organic aerosol (OA) and dimethyl sulfide increase by a factor of ~ 10, ~ 4 and ~ 15 respectively. However, the CCN response is weak, with negative changes over the central Arctic Ocean. The weak response is due to the efficient scavenging of aerosol by extensive drizzling stratocumulus clouds. In the scavenging-dominated Arctic environment, the production of condensable vapour from oxidation of dimethyl sulfide grows particles to sizes where they can be scavenged. This loss is not sufficiently compensated by new particle formation, due to the suppression of nucleation by the large condensation sink resulting from sea-salt and primary OA emissions. Thus, our results suggest that increased aerosol emissions will not cause a climate feedback through changes in cloud microphysical and radiative properties.

Posted on 29 July 2014 | 12:00 am


Technical Note: 30 years of HIRS data of upper tropospheric humidity

Technical Note: 30 years of HIRS data of upper tropospheric humidity

Atmospheric Chemistry and Physics, 14, 7533-7541, 2014

Author(s): K. Gierens, K. Eleftheratos, and L. Shi

We use 30 years of intercalibrated HIRS (High-Resolution Infrared Radiation Sounder) data to produce a 30-year data set of upper tropospheric humidity with respect to ice (UTHi). Since the required brightness temperatures (channels 12 and 6, T12 and T6) are intercalibrated to different versions of the HIRS sensors (HIRS/2 and HIRS/4) it is necessary to convert the channel 6 brightness temperatures which are intercalibrated to HIRS/4 into equivalent brightness temperatures intercalibrated to HIRS/2, which is achieved using a linear regression. Using the new regression coefficients we produce daily files of UTHi, T12 and T6, for each NOAA satellite and METOP-A (Meteorological Operational Satellite Programme), which carry the HIRS instrument. From this we calculate daily and monthly means in 2.5° × 2.5° resolution for the northern midlatitude zone 30–60° N. As a first application we calculate decadal means of UTHi and the brightness temperatures for the two decades 1980–1989 and 2000–2009. We find that the humidity mainly increased from the 1980s to the 2000s and that this increase is highly statistically significant in large regions of the considered midlatitude belt. The main reason for this result and its statistical significance is the corresponding increase of the T12 variance. Changes of the mean brightness temperatures are less significant.

Posted on 28 July 2014 | 12:00 am


Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by deciduous forest (Sapporo, northern Japan) during the summer of 2011

Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by deciduous forest (Sapporo, northern Japan) during the summer of 2011

Atmospheric Chemistry and Physics, 14, 7519-7531, 2014

Author(s): J. Jung and K. Kawamura

To investigate the hygroscopic properties of ultrafine particles during new particle formation events, the hygroscopic growth factors of size-segregated atmospheric particles were measured at an urban site in Sapporo, northern Japan, during the summer of 2011. The hygroscopic growth factor at 85 % relative humidity [g(85%)] of freshly formed nucleation mode particles was 1.11 to 1.28 (average: 1.16 ± 0.06) at a dry particle diameter (Dp) centered on 20 nm, which is equivalent to 1.17 to 1.35 (1.23 ± 0.06) at a dry Dp centered on 100 nm after considering the Kelvin effect. These values are comparable with those of secondary organic aerosols, suggesting that low-volatility organic vapors are important to the burst of nucleation mode particles. The equivalent g(85%) at a dry Dp of 100 nm for nucleated particles that have grown to Aitken mode sizes (1.24 to 1.34; average: 1.30 ± 0.04) were slightly higher than those of newly formed nucleation mode particles, suggesting that the growth of freshly formed nucleation mode particles to the Aitken mode size can be subjected to condensation of not only low-volatility organic vapors, but also water-soluble inorganic species. Based on this result, and previous measurement of radiocarbon in aerosols, we suggest that the burst of nucleation mode particles and their subsequent growth were highly affected by biogenic organic emissions at this measurement site, which is surrounded by deciduous forest. Gradual increases in mode diameter after the burst of nucleation mode particles were observed under southerly wind conditions, with a dominant contribution of intermediately hygroscopic particles. However, sharp increases in mode diameter were observed when the wind direction shifted to northwesterly or northeasterly, with a sharp increase in the highly hygroscopic particle fraction of the Aitken mode particles, indicating that the hygroscopic growth factor of newly formed particles is perturbed by the local winds that deliver different air masses to the measurement site.

Posted on 24 July 2014 | 12:00 am


Air–sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean

Air–sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean

Atmospheric Chemistry and Physics, 14, 7499-7517, 2014

Author(s): M. Yang, R. Beale, P. Liss, M. Johnson, B. Blomquist, and P. Nightingale

We present air–sea fluxes of oxygenated volatile organics compounds (OVOCs) quantified by eddy covariance (EC) during the Atlantic Meridional Transect cruise in 2012. Measurements of acetone, acetaldehyde, and methanol in air as well as in water were made in several different oceanic provinces and over a wide range of wind speeds (1–18 m s?1). The ocean appears to be a net sink for acetone in the higher latitudes of the North Atlantic but a source in the subtropics. In the South Atlantic, seawater acetone was near saturation relative to the atmosphere, resulting in essentially zero net flux. For acetaldehyde, the two-layer model predicts a small oceanic emission, which was not well resolved by the EC method. Chemical enhancement of air–sea acetaldehyde exchange due to aqueous hydration appears to be minor. The deposition velocity of methanol correlates linearly with the transfer velocity of sensible heat, confirming predominant airside control. We examine the relationships between the OVOC concentrations in air as well as in water, and quantify the gross emission and deposition fluxes of these gases.

Posted on 24 July 2014 | 12:00 am


Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

Atmospheric Chemistry and Physics, 14, 7485-7497, 2014

Author(s): B. Gantt, J. He, X. Zhang, Y. Zhang, and A. Nenes

One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol–cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation processes should result in better predictions of radiative forcing from aerosol–cloud interactions.

Posted on 24 July 2014 | 12:00 am


Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMAs), Korea

Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMAs), Korea

Atmospheric Chemistry and Physics, 14, 7461-7484, 2014

Author(s): H.-K. Kim, J.-H. Woo, R. S. Park, C. H. Song, J.-H. Kim, S.-J. Ban, and J.-H. Park

Plant functional type (PFT) distributions affect the results of biogenic emission modeling as well as O3 and particulate matter (PM) simulations using chemistry-transport models (CTMs). This paper analyzes the variations of both surface biogenic volatile organic compound (BVOC) emissions and O3 concentrations due to changes in the PFT distributions in the Seoul Metropolitan Areas, Korea. The Fifth-Generation NCAR/Pennsylvania State Meso-scale Model (MM5)/the Model of Emissions of Gases and Aerosols from Nature (MEGAN)/the Sparse Matrix Operator Kernel Emissions (SMOKE)/the Community Multiscale Air Quality (CMAQ) model simulations were implemented over the Seoul Metropolitan Areas in Korea to predict surface O3 concentrations for the period of 1 May to 31 June 2008. Starting from a performance check of CTM predictions, we consecutively assessed the effects of PFT area deviations on the MEGAN BVOC and CTM O3 predictions, and we further considered the basis of geospatial and statistical analyses. The three PFT data sets considered were (1) the Korean PFT, developed with Korea-specific vegetation database; (2) the CDP PFT, adopted from the community data portal (CDP) of US National Center for Atmospheric Research in the United States (NCAR); (3) MODIS PFT, reclassified from the NASA Terra and Aqua combined land cover products. Although the CMAQ performance check reveals that all of the three different PFT data sets are applicable choices for regulatory modeling practice, noticeable primary data (i.e., PFT and Leaf Area Index (LAI)) was observed to be missing in many geographic locations. Based on the assessed effect of such missing data on CMAQ O3 predictions, we found that this missing data can cause spatially increased bias in CMAQ O3. Thus, it must be resolved in the near future to obtain more accurate biogenic emission and chemistry transport modeling results.

Comparisons of MEGAN biogenic emission results with the three different PFT data showed that broadleaf trees (BTs) are the most significant contributor, followed by needleleaf trees (NTs), shrub (SB), and herbaceous plants (HBs) to the total BVOCs. In addition, isoprene from BTs and terpene from NTs were recognized as significant primary and secondary BVOC species in terms of BVOC emissions distributions and O3-forming potentials in the study domain. A geographically weighted regression analysis with locally compensated ridge (LCR-GWR) with the different PFT data (?O3 vs. ?PFTs) suggests that addition of BT, SB, and NT areas can contribute to O3 increase, whereas addition of an HB area contributes to O3 decrease in the domain.

Assessment results of the simulated spatial and temporal changes of O3 distributions with the different PFT scenarios reveal that hourly and local impacts from the different PFT distributions on occasional inter-deviations of O3 are quite noticeable, reaching up to 13 ppb. The simulated maximum 1 h O3 inter-deviations between different PFT scenarios have an asymmetric diurnal distribution pattern (low in the early morning, rising during the day, peaking at 05:00 p.m., and decreasing during the night) in the study domain. Exponentially diverging hourly BVOC emissions and O3 concentrations with increasing ambient temperature suggest that the use of different PFT distribution data requires much caution when modeling (or forecasting) O3 air quality in complicated urban atmospheric conditions in terms of whether uncertainties in O3 prediction results are expected to be mild or severe.

Posted on 22 July 2014 | 12:00 am


Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard

Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard

Atmospheric Chemistry and Physics, 14, 7445-7460, 2014

Author(s): N. Rastak, S. Silvergren, P. Zieger, U. Wideqvist, J. Ström, B. Svenningsson, M. Maturilli, M. Tesche, A. M. L. Ekman, P. Tunved, and I. Riipinen

In this study we investigated the impact of water uptake by aerosol particles in ambient atmosphere on their optical properties and their direct radiative effect (ADRE, W m−2) in the Arctic at Ny-Ålesund, Svalbard, during 2008. To achieve this, we combined three models, a hygroscopic growth model, a Mie model and a radiative transfer model, with an extensive set of observational data. We found that the seasonal variation of dry aerosol scattering coefficients showed minimum values during the summer season and the beginning of fall (July-August-September), when small particles (< 100 nm in diameter) dominate the aerosol number size distribution. The maximum scattering by dry particles was observed during the Arctic haze period (March-April-May) when the average size of the particles was larger. Considering the hygroscopic growth of aerosol particles in the ambient atmosphere had a significant impact on the aerosol scattering coefficients: the aerosol scattering coefficients were enhanced by on average a factor of 4.30 ± 2.26 (mean ± standard deviation), with lower values during the haze period (March-April-May) as compared to summer and fall. Hygroscopic growth of aerosol particles was found to cause 1.6 to 3.7 times more negative ADRE at the surface, with the smallest effect during the haze period (March-April-May) and the highest during late summer and beginning of fall (July-August-September).

Posted on 21 July 2014 | 12:00 am


Single-particle characterization of the high-Arctic summertime aerosol

Single-particle characterization of the high-Arctic summertime aerosol

Atmospheric Chemistry and Physics, 14, 7409-7430, 2014

Author(s): B. Sierau, R. Y.-W. Chang, C. Leck, J. Paatero, and U. Lohmann

Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.

Posted on 18 July 2014 | 12:00 am


Uptake of HO2 radicals onto Arizona test dust particles using an aerosol flow tube

Uptake of HO2 radicals onto Arizona test dust particles using an aerosol flow tube

Atmospheric Chemistry and Physics, 14, 7397-7408, 2014

Author(s): P. S. J. Matthews, M. T. Baeza-Romero, L. K. Whalley, and D. E. Heard

Uptake coefficients for HO2 radicals onto Arizona test dust (ATD) aerosols were measured at room temperature and atmospheric pressure using an aerosol flow tube and the sensitive fluorescence assay by gas expansion (FAGE) technique, enabling HO2 concentrations in the range 3–10 × 108 molecule cm?3 to be investigated. The uptake coefficients were measured as 0.031 ± 0.008 and 0.018 ± 0.006 for the lower and higher HO2 concentrations, respectively, over a range of relative humidities (5–76%). A time dependence for the HO2 uptake onto the ATD aerosols was observed, with larger uptake coefficients observed at shorter reaction times. The combination of time and HO2 concentration dependencies suggest either the partial saturation of the dust surface or that a chemical component of the dust is partially consumed whilst the aerosols are exposed to HO2. A constrained box model is used to show that HO2 uptake to dust surfaces may be an important loss pathway of HO2 in the atmosphere.

Posted on 18 July 2014 | 12:00 am


Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

Atmospheric Chemistry and Physics, 14, 7431-7443, 2014

Author(s): K. Pohl, M. Cantwell, P. Herckes, and R. Lohmann

Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products. Atmospheric particulate matter samples across the tropical Atlantic boundary layer were collected in the summer of 2010 during the southern hemispheric dry season when open fire events were frequent in Africa and South America. The highest black carbon concentrations were detected in the Caribbean Sea and within the African plume, with a regional average of 0.6 μg m−3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m−3. Samples were quantified for black carbon using multiple methods to provide insights into the form and stability of the carbonaceous aerosols (i.e., thermally unstable organic carbon, soot like, and charcoal like). Soot-like aerosols composed up to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the African plume. Charcoal-like aerosols composed up to 29% of the carbonaceous aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles could be present in significant concentrations in remote environments. To better apportion concentrations and forms of black carbon, multiple detection methods should be used, particularly in regions impacted by biomass burning emissions.

Posted on 18 July 2014 | 12:00 am


Systematic analysis of tropospheric NO2 long-range transport events detected in GOME-2 satellite data

Systematic analysis of tropospheric NO2 long-range transport events detected in GOME-2 satellite data

Atmospheric Chemistry and Physics, 14, 7367-7396, 2014

Author(s): A. W. Zien, A. Richter, A. Hilboll, A.-M. Blechschmidt, and J. P. Burrows

Intercontinental long-range transport (LRT) events of NO2 relocate the effects of air pollution from emission regions to remote, pristine regions. We detect transported plumes in tropospheric NO2 columns measured by the GOME-2/MetOp-A instrument with a specialized algorithm and trace the plumes to their sources using the HYSPLIT Lagrangian transport model. With this algorithm we find 3808 LRT events over the ocean for the period 2007 to 2011. LRT events occur frequently in the mid-latitudes, emerging usually from coastal high-emission regions. In the free troposphere, plumes of NO2 can travel for several days to the polar oceanic atmosphere or to other continents. They travel along characteristic routes and originate from both continuous anthropogenic emission and emission events such as bush fires. Most NO2 LRT events occur during autumn and winter months, when meteorological conditions and emissions are most favorable. The evaluation of meteorological data shows that the observed NO2 LRT is often linked to cyclones passing over an emission region.

Posted on 18 July 2014 | 12:00 am





Other notes:



 Information about this site:


 
The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.
 
To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!
Citation:
http://www.internetchemistry.com/rss/atmospheric-chemistry.php
Keywords:
Chronological list of recent articles on Chemistry, Atmospheric Chemistry, Atmospheric Chemistry and Physics.
Update:
28.09.2013


Internetchemistry ChemLin © 1996 - 2013 A. J.