[Sitemap] [Contact] [Imprint] Deutsche Version Search site 

Atmospheric Chemistry and Physics - Current Research Articles



Current research articles: Atmospheric Chemistry

The author- or copyrights of the listed research articles below are held by the respective authors or site operators, who are also responsible for the content of the presentations.

More current articles from Chemistry Journals same topic: see the navigation menu on the left.

To list your article here please contact us by eMail.

To search this web page for specific words type "Ctrl" + "F" on your keyboard (Command + "F" on a Mac). Then: type the word you are searching for in the window that pops up!




On this page considered journals:



Atmospheric Chemistry and Physics - published by Copernicus Publications

ACP is an international scientific open access journal dedicated to the publication and public discussion of high quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere and mesosphere.




Current articles of the journal:



Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity

Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity

Atmospheric Chemistry and Physics, 14, 9871-9881, 2014

Author(s): A. Banerjee, A. T. Archibald, A. C. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, and J. A. Pyle

Lightning is one of the major natural sources of NOx in the atmosphere. A suite of time slice experiments using a stratosphere-resolving configuration of the Unified Model (UM), containing the United Kingdom Chemistry and Aerosols sub-model (UKCA), has been performed to investigate the impact of climate change on emissions of NOx from lightning (LNOx) and to highlight its critical impacts on photochemical ozone production and the oxidising capacity of the troposphere. Two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5) are explored. LNOx is simulated to increase in a year-2100 climate by 33% (RCP4.5) and 78% (RCP8.5), primarily as a result of increases in the depth of convection. The total tropospheric chemical odd oxygen production (P(Ox)) increases linearly with increases in total LNOx and consequently, tropospheric ozone burdens of 29 ± 4 Tg(O3) (RCP4.5) and 46 ± 4 Tg(O3) (RCP8.5) are calculated here. By prescribing a uniform surface boundary concentration for methane in these simulations, methane-driven feedbacks are essentially neglected. A simple estimate of the contribution of the feedback reduces the increase in ozone burden to 24 and 33 Tg(O3), respectively. We thus show that, through changes in LNOx, the effects of climate change counteract the simulated mitigation of the ozone burden, which results from reductions in ozone precursor emissions as part of air quality controls projected in the RCP scenarios. Without the driver of increased LNOx, our simulations suggest that the net effect of climate change would be to lower free tropospheric ozone.

In addition, we identify large climate-change-induced enhancements in the concentration of the hydroxyl radical (OH) in the tropical upper troposphere (UT), particularly over the Maritime Continent, primarily as a consequence of greater LNOx. The OH enhancement in the tropics increases oxidation of both methane (with feedbacks onto chemistry and climate) and very short-lived substances (VSLS) (with implications for stratospheric ozone depletion). We emphasise that it is important to improve our understanding of LNOx in order to gain confidence in model projections of composition change under future climate.

Posted on 18 September 2014 | 12:00 am


Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

Atmospheric Chemistry and Physics, 14, 9903-9916, 2014

Author(s): S. D. Chambers, S.-B. Hong, A. G. Williams, J. Crawford, A. D. Griffiths, and S.-J. Park

We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m?3 in late-summer to 44 mBq m?3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m?3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47–53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8–4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

Posted on 18 September 2014 | 12:00 am


Drivers of column-average CO2 variability at Southern Hemispheric Total Carbon Column Observing Network sites

Drivers of column-average CO2 variability at Southern Hemispheric Total Carbon Column Observing Network sites

Atmospheric Chemistry and Physics, 14, 9883-9901, 2014

Author(s): N. M. Deutscher, V. Sherlock, S. E. Mikaloff Fletcher, D. W. T. Griffith, J. Notholt, R. Macatangay, B. J. Connor, J. Robinson, H. Shiona, V. A. Velazco, Y. Wang, P. O. Wennberg, and D. Wunch

We investigate factors that drive the variability in total column CO2 at the Total Carbon Column Observing Network sites in the Southern Hemisphere using fluxes tagged by process and by source region from the CarbonTracker analysed product as well as the Simple Biosphere model. We show that the terrestrial biosphere is the largest driver of variability in the Southern Hemisphere column CO2. However, it does not dominate in the same fashion as in the Northern Hemisphere. Local- and hemispheric-scale biomass burning can also play an important role, particularly at the tropical site, Darwin. The magnitude of seasonal variability in the column-average dry-air mole fraction of CO2, XCO2, is also much smaller in the Southern Hemisphere and comparable in magnitude to the annual increase. Comparison of measurements to the model simulations highlights that there is some discrepancy between the two time series, especially in the early part of the Darwin data record. We show that this mismatch is most likely due to erroneously estimated local fluxes in the Australian tropical region, which are associated with enhanced photosynthesis caused by early rainfall during the tropical monsoon season.

Posted on 18 September 2014 | 12:00 am


Tropospheric ozone increases over the southern Africa region: bellwether for rapid growth in Southern Hemisphere pollution?

Tropospheric ozone increases over the southern Africa region: bellwether for rapid growth in Southern Hemisphere pollution?

Atmospheric Chemistry and Physics, 14, 9855-9869, 2014

Author(s): A. M. Thompson, N. V. Balashov, J. C. Witte, J. G. R. Coetzee, V. Thouret, and F. Posny

Increases in free-tropospheric (FT) ozone based on ozonesonde records from the early 1990s through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion (21° S, 55° E; ~2800 km NE of Irene in the Indian Ocean), have been reported. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5–4 km) was also observed during the 18-year period, equivalent to 30% decade?1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990–2007 are re-examined, filling in a 1995–1999 gap with ozone profiles taken during the Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) project over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, El Niño–Southern Oscillation (ENSO) and possible tropopause changes was applied to monthly averaged Irene data from 4 to 11 km and to 1992–2011 Réunion sonde data from 4 to 15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT; 4–11 km over Irene, 4–15 km over Réunion) in winter (June–August), with increases ~1 ppbv yr?1 over Irene and ~2 ppbv yr?1 over Réunion. These changes are equivalent to ~25 and 35–45% decade?1, respectively. Both stations also display smaller positive trends in summer, with a 45% decade?1 ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330–350 K. PV affects UT ozone over Irene in November–December but displays little relationship with ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory origins of air parcels sampled by the sondes and with recent NOx emissions trends estimated for Africa, South America and Madagascar. For Réunion trajectories also point to sources from the eastern Indian Ocean and Asia.

Posted on 17 September 2014 | 12:00 am


Cloud droplet activity changes of soot aerosol upon smog chamber ageing

Cloud droplet activity changes of soot aerosol upon smog chamber ageing

Atmospheric Chemistry and Physics, 14, 9831-9854, 2014

Author(s): C. Wittbom, A. C. Eriksson, J. Rissler, J. E. Carlsson, P. Roldin, E. Z. Nordin, P. T. Nilsson, E. Swietlicki, J. H. Pagels, and B. Svenningsson

Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤2%, i.e. the BC core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatility organic compounds (IVOCs) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (e.g. primary or secondary organic aerosol), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters describing the organic material), showed good agreement with cloud droplet activation measurements for particles with a SOA mass fraction ≥0.12 (slightly aged particles). The activation properties are enhanced with only a slight increase in organic material coating the soot particles (SOA mass fraction < 0.12), however not as much as predicted by Köhler theory. The discrepancy between theory and experiments during the early stages of ageing might be due to solubility limitations, unevenly distributed organic material or hindering particle morphology.

The change in properties of soot nanoparticles upon photochemical processing clearly increases their hygroscopicity, which affects their behaviour both in the atmosphere and in the human respiratory system.

Posted on 17 September 2014 | 12:00 am


To what extent could water isotopic measurements help us understand model biases in the water cycle over Western Siberia

To what extent could water isotopic measurements help us understand model biases in the water cycle over Western Siberia

Atmospheric Chemistry and Physics, 14, 9807-9830, 2014

Author(s): V. Gryazin, C. Risi, J. Jouzel, N. Kurita, J. Worden, C. Frankenberg, V. Bastrikov, K. Gribanov, and O. Stukova

We evaluate the isotopic composition of water vapor and precipitation simulated by the LMDZ (Laboratoire de Météorologie Dynamique-Zoom) GCM (General Circulation Model) over Siberia using several data sets: TES (Tropospheric Emission Spectrometer) and GOSAT (Greenhouse gases Observing SATellite) satellite observations of tropospheric water vapor, GNIP (Global Network for Isotopes in Precipitation) and SNIP (Siberian Network for Isotopes in Precipitation) precipitation networks, and daily, in situ measurements of water vapor and precipitation at the Kourovka site in Western Siberia. LMDZ captures the spatial, seasonal and daily variations reasonably well, but it underestimates humidity (q) in summer and overestimates ?D in the vapor and precipitation in all seasons. The performance of LMDZ is put in the context of other isotopic models from the SWING2 (Stable Water Intercomparison Group phase 2) models. There is significant spread among models in the simulation of ?D, and of the ?D-q relationship. This confirms that ?D brings additional information compared to q only. We specifically investigate the added value of water isotopic measurements to interpret the warm and dry bias featured by most GCMs over mid and high latitude continents in summer. The analysis of the slopes in ?D-q diagrams and of processes controlling ?D and q variations suggests that the cause of the dry bias could be either a problem in the large-scale advection transporting too much dry and warm air from the south, or too strong boundary-layer mixing. However, ?D-q diagrams using the available data do not tell the full story. Additional measurements would be needed, or a more sophisticated theoretical framework would need to be developed.

Posted on 17 September 2014 | 12:00 am


High-resolution mapping of vehicle emissions in China in 2008

High-resolution mapping of vehicle emissions in China in 2008

Atmospheric Chemistry and Physics, 14, 9787-9805, 2014

Author(s): B. Zheng, H. Huo, Q. Zhang, Z. L. Yao, X. T. Wang, X. F. Yang, H. Liu, and K. B. He

This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

Posted on 17 September 2014 | 12:00 am


Analysis of the diurnal development of a lake-valley circulation in the Alps based on airborne and surface measurements

Analysis of the diurnal development of a lake-valley circulation in the Alps based on airborne and surface measurements

Atmospheric Chemistry and Physics, 14, 9771-9786, 2014

Author(s): L. Laiti, D. Zardi, M. de Franceschi, G. Rampanelli, and L. Giovannini

This study investigates the thermal structures of the atmospheric boundary layer (ABL) and the near-surface wind field associated with a lake-valley circulation in the south-eastern Italian Alps – the so-called Ora del Garda. Two flights of an equipped motorglider allowed for the exploration of the diurnal evolution of this circulation, from the onset, on Lake Garda's shoreline, throughout its development along the Sarca Valley and Lakes Valley (Valle dei Laghi), to the outflow into the Adige Valley. At the same time, surface observations, both from a targeted field campaign and from routinely operated weather stations, supported the analysis of the development of the Ora del Garda at the valley floor.

In particular, in the valleys typical ABL vertical structures, characterized by rather shallow convective mixed layers (~ 500 m) and (deeper) weakly stable layers above, up to the lateral crest height, are identified in the late morning. In contrast, close to the lake the ABL is stably stratified down to very low heights, as a consequence of the intense advection of colder air associated with the Ora del Garda flow (up to 6 m s–1). The combined analysis of surface and airborne observations (remapped over 3-D high-resolution grids) suggests that the lake-breeze front propagating up-valley from the shoreline in the late morning penetrates slightly later at the eastern end of the valley inlet (delay: ~ 1 h), probably due to the asymmetric radiative forcing caused by the N–S valley orientation. On the other hand, in the early afternoon the Ora del Garda overflows through an elevated gap, producing an anomalous, strong cross-valley wind (5 m s–1) at the Adige Valley floor north of Trento, which overwhelms the local up-valley wind. This feature is associated with a strong deepening of the local mixed layer (from 400 to 1300 m). The potential temperature 3-D field suggests that the intense turbulent mixing may be attributed to the development of a downslope wind across the gap, followed by a hydraulic jump downstream.

Posted on 17 September 2014 | 12:00 am


Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

Atmospheric Chemistry and Physics, 14, 9727-9754, 2014

Author(s): C. E. Stockwell, R. J. Yokelson, S. M. Kreidenweis, A. L. Robinson, P. J. DeMott, R. C. Sullivan, J. Reardon, K. C. Ryan, D. W. T. Griffith, and L. Stevens

During the fourth Fire Lab at Missoula Experiment (FLAME-4, October–November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 – including the fuel properties, the nature of the burn simulations, and the instrumentation employed – and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models.

Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues. Burning alfalfa produced the highest average NH3 EF observed in the study (6.63 ± 2.47 g kg?1), while sugar cane fires produced the highest EF for glycolaldehyde (6.92 g kg?1) and other reactive oxygenated organic gases such as HCHO, HCOOH, and CH3COOH. Due to the high sulfur and nitrogen content of tires, they produced the highest average SO2 emissions (26.2 ± 2.2 g kg?1) and high NOx and HONO emissions. High variability was observed for peat fire emissions, but they were consistently characterized by large EFs for NH3 (1.82 ± 0.60 g kg?1) and CH4 (10.8 ± 5.6 g kg?1). The variability observed in peat fire emissions, the fact that only one peat fire had previously been subject to detailed emissions characterization, and the abundant emissions from tropical peatlands all impart high value to our detailed measurements of the emissions from burning three Indonesian peat samples. This study also provides the first EFs for HONO and NO2 for Indonesian peat fires. Open cooking fire emissions of HONO and HCN are reported for the first time, and the first emissions data for HCN, NO, NO2, HONO, glycolaldehyde, furan, and SO2 are reported for "rocket" stoves: a common type of improved cookstove. The HCN / CO emission ratios for cooking fires (1.72 × 10?3 ± 4.08 × 10−4) and peat fires (1.45 × 10?2 ± 5.47 × 10?3) are well below and above the typical values for other types of biomass burning, respectively. This would affect the use of HCN / CO observations for source apportionment in some regions. Biomass burning EFs for HCl are rare and are reported for the first time for burning African savanna grasses. High emissions of HCl were also produced by burning many crop residues and two grasses from coastal ecosystems. HCl could be the main chlorine-containing gas in very fresh smoke, but rapid partitioning to aerosol followed by slower outgassing probably occurs.

Posted on 16 September 2014 | 12:00 am


Analysing time-varying trends in stratospheric ozone time series using the state space approach

Analysing time-varying trends in stratospheric ozone time series using the state space approach

Atmospheric Chemistry and Physics, 14, 9707-9725, 2014

Author(s): M. Laine, N. Latva-Pukkila, and E. Kyrölä

We describe a hierarchical statistical state space model for ozone profile time series. The time series are from satellite measurements by the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Global Ozone Monitoring by Occultation of Stars (GOMOS) instruments spanning the years 1984–2011. Vertical ozone profiles were linearly interpolated on an altitude grid with 1 km resolution covering 20–60 km. Monthly averages were calculated for each altitude level and 10° wide latitude bins between 60° S and 60° N. In the analysis, mean densities are studied separately for the 25–35, 35–45, and 45–55 km layers. Model variables include the ozone mean level, local trend, seasonal oscillations, and proxy variables for solar activity, the Quasi-Biennial Oscillation (QBO), and the El Niño–Southern Oscillation (ENSO).

This is a companion paper to \citet{erkkitime}, where a piecewise linear model was used together with the same proxies as in this work (excluding ENSO). The piecewise linear trend was allowed to change at the beginning of 1997 in all latitudes and altitudes. In the modelling of the present paper such an assumption is not needed as the linear trend is allowed to change continuously at each time step. This freedom is also allowed for the seasonal oscillations whereas other regression coefficients are taken independent of time. According to our analyses, the slowly varying ozone background shows roughly three general development patterns. A continuous decay for the whole period 1984–2011 is evident in the southernmost latitude belt 50–60° S in all altitude regions and in 50–60° N in the lowest altitude region 25–35 km. A second pattern, where a recovery after an initial decay is followed by a further decay, is found at northern latitudes from the equator to 50° N in the lowest altitude region (25–35 km) and between 40° N and 60° N in the 35–45 km altitude region. Further ozone loss occurred after 2007 in these regions. Everywhere else a decay is followed by a recovery. This pattern is shown at all altitudes and latitudes in the Southern Hemisphere (10–50° S) and in the 45–55 km layer in the Northern Hemisphere (from the equator to 40° N). In the 45–55 km range the trend, measured as an average change in 10 years, has mostly turned from negative to positive before the year 2000. In those regions where the "V" type of change of the trend is appropriate, the turning point is around the years 1997–2001. To compare results for the trend changes with the companion paper, we studied the difference in trends between the years from 1984 to 1997 and from 1997 to 2011. Overall, the two methods produce very similar ozone recovery patterns with the maximum trend change of 10% in 35–45 km. The state space method (used in this paper) shows a somewhat faster recovery than the piecewise linear model. For the percent change of the ozone density per decade the difference between the results is below three percentage units.

Posted on 16 September 2014 | 12:00 am


Sensitivity of high-temperature weather to initial soil moisture: a case study using the WRF model

Sensitivity of high-temperature weather to initial soil moisture: a case study using the WRF model

Atmospheric Chemistry and Physics, 14, 9623-9639, 2014

Author(s): X.-M. Zeng, B. Wang, Y. Zhang, S. Song, X. Huang, Y. Zheng, C. Chen, and G. Wang

Using a succession of 24 h Weather Research and Forecasting model (WRF) simulations, we investigate the sensitivity to initial soil moisture of a short-range high-temperature weather event that occurred in late July 2003 in East China. The initial soil moisture (SMOIS) in the Noah land surface scheme is adjusted (relative to the control run, CTL) for four groups of simulations: DRY25 (?25%), DRY50 (?50%), WET25 (+25%) and WET50 (+50%). Ten 24 h integrations are performed in each group.

We focus on 2 m surface air temperature (SAT) greater than 35 °C (the threshold of "high-temperature" events in China) at 06:00 UTC (roughly 14:00 LT in the study domain) to analyse the occurrence of the high-temperature event. The 10-day mean results show that the 06:00 UTC SAT (SAT06) is sensitive to the SMOIS change; specifically, SAT06 exhibits an apparent increase with the SMOIS decrease (e.g. compared with CTL, DRY25 generally results in a 1 °C SAT06 increase over the land surface of East China), areas with 35 °C or higher SAT06 are the most affected, and the simulations are more sensitive to the SMOIS decrease than to the SMOIS increase, which suggests that hot weather can be amplified under low soil moisture conditions. Regarding the mechanism underlying the extremely high SAT06, sensible heat flux has been shown to directly heat the lower atmosphere, and latent heat flux has been found to be more sensitive to the SMOIS change, resulting in an overall increase in surface net radiation due to the increased greenhouse effect (e.g. with the SMOIS increase from DRY25 to CTL, the 10-day mean net radiation increases by 5 W m−2). Additionally, due to the unique and dynamic nature of the western Pacific subtropical high, negative feedback occurs between the regional atmospheric circulation and the air temperature in the lower atmosphere while positive feedback occurs in the mid-troposphere.

Using a method based on an analogous temperature relationship, a detailed analysis of the physical processes shows that for the SAT change, the SMOIS change affects diabatic processes (e.g. surface fluxes) more strongly than the adiabatic process of subsidence in the western Pacific subtropical high in the five groups of simulations. Interestingly, although diabatic processes dominate subsidence during the daytime and night-time separately, they do not necessarily dominate during the 24 h periods (e.g. they are dominant in the WET and CTL simulations only). Further, as the SMOIS decreases, the SAT06 increases, which is largely due to the reduced cooling effect of the diabatic processes, rather than the warming effect of subsidence.

Unlike previous studies on heatwave events at climate timescales, this paper presents the sensitivity of simulated short-term hot weather to initial soil moisture and emphasises the importance of appropriate soil moisture initialization when simulating hot weather.

Posted on 16 September 2014 | 12:00 am


Aqueous-phase photooxidation of levoglucosan – a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

Aqueous-phase photooxidation of levoglucosan – a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

Atmospheric Chemistry and Physics, 14, 9695-9706, 2014

Author(s): R. Zhao, E. L. Mungall, A. K. Y. Lee, D. Aljawhary, and J. P. D. Abbatt

Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (?2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M?1 s?1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44–f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient atmosphere.

Posted on 16 September 2014 | 12:00 am


Corrigendum to "Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide"

Corrigendum to "Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide"

Atmospheric Chemistry and Physics, 14, 9511-9511, 2014

Author(s): M. O. Battle, J. P. Severinghaus, E. D. Sofen, D. Plotkin, A. J. Orsi, M. Aydin, S. A. Montzka, T. Sowers, and P. P. Tans

No abstract available.

Posted on 16 September 2014 | 12:00 am


Estimates of European emissions of methyl chloroform using a Bayesian inversion method

Estimates of European emissions of methyl chloroform using a Bayesian inversion method

Atmospheric Chemistry and Physics, 14, 9755-9770, 2014

Author(s): M. Maione, F. Graziosi, J. Arduini, F. Furlani, U. Giostra, D. R. Blake, P. Bonasoni, X. Fang, S. A. Montzka, S. J. O'Doherty, S. Reimann, A. Stohl, and M. K. Vollmer

Methyl chloroform (MCF) is a man-made chlorinated solvent contributing to the destruction of stratospheric ozone and is controlled under the "Montreal Protocol on Substances that Deplete the Ozone Layer" and its amendments, which called for its phase-out in 1996 in developed countries and 2015 in developing countries. Long-term, high-frequency observations of MCF carried out at three European sites show a constant decline in the background mixing ratios of MCF. However, we observe persistent non-negligible mixing ratio enhancements of MCF in pollution episodes, suggesting unexpectedly high ongoing emissions in Europe. In order to identify the source regions and to give an estimate of the magnitude of such emissions, we have used a Bayesian inversion method and a point source analysis, based on high-frequency long-term observations at the three European sites.

The inversion identified southeastern France (SEF) as a region with enhanced MCF emissions. This estimate was confirmed by the point source analysis. We performed this analysis using an 11-year data set, from January 2002 to December 2012. Overall, emissions estimated for the European study domain decreased nearly exponentially from 1.1 Gg yr?1 in 2002 to 0.32 Gg yr?1 in 2012, of which the estimated emissions from the SEF region accounted for 0.49 Gg yr?1 in 2002 and 0.20 Gg yr?1 in 2012. The European estimates are a significant fraction of the total semi-hemisphere (30–90° N) emissions, contributing a minimum of 9.8% in 2004 and a maximum of 33.7% in 2011, of which on average 50% are from the SEF region. On the global scale, the SEF region is thus responsible for a minimum of 2.6% (in 2003) and a maximum of 10.3% (in 2009) of the global MCF emissions.

Posted on 16 September 2014 | 12:00 am


Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate

Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate

Atmospheric Chemistry and Physics, 14, 9641-9664, 2014

Author(s): L. Ferrero, M. Castelli, B. S. Ferrini, M. Moscatelli, M. G. Perrone, G. Sangiorgi, L. D'Angelo, G. Rovelli, B. Moroni, F. Scardazza, G. Mo?nik, E. Bolzacchini, M. Petitta, and D. Cappelletti

A systematic study of black carbon (BC) vertical profiles measured at high-resolution over three Italian basin valleys (Terni Valley, Po Valley and Passiria Valley) is presented. BC vertical profiles are scarcely available in literature. The campaign lasted 45 days and resulted in 120 measured vertical profiles. Besides the BC mass concentration, measurements along the vertical profiles also included aerosol size distributions in the optical particle counter range, chemical analysis of filter samples and a full set of meteorological parameters. Using the collected experimental data, we performed calculations of aerosol optical properties along the vertical profiles. The results, validated with AERONET data, were used as inputs to a radiative transfer model (libRadtran). The latter allowed an estimation of vertical profiles of the aerosol direct radiative effect, the atmospheric absorption and the heating rate in the lower troposphere.

The present measurements revealed some common behaviors over the studied basin valleys. Specifically, at the mixing height, marked concentration drops of both BC (range: from −48.4 ± 5.3 to −69.1 ± 5.5%) and aerosols (range: from −23.9 ± 4.3 to −46.5 ± 7.3%) were found. The measured percentage decrease of BC was higher than that of aerosols: therefore, the BC aerosol fraction decreased upwards. Correspondingly, both the absorption and scattering coefficients decreased strongly across the mixing layer (range: from −47.6 ± 2.5 to −71.3 ± 3.0% and from −23.5 ± 0.8 to −61.2 ± 3.1%, respectively) resulting in a single-scattering albedo increase along height (range: from +4.9 ± 2.2 to +7.4 ± 1.0%).

This behavior influenced the vertical distribution of the aerosol direct radiative effect and of the heating rate. In this respect, the highest atmospheric absorption of radiation was predicted below the mixing height (~ 2–3 times larger than above it) resulting in a heating rate characterized by a vertical negative gradient (range: from −2.6 ± 0.2 to −8.3 ± 1.2 K day?1 km?1). In conclusion, the present results suggest that the BC below the mixing height has the potential to promote a negative feedback on the atmospheric stability over basin valleys, weakening the ground-based thermal inversions and increasing the dispersal conditions.

Posted on 16 September 2014 | 12:00 am


Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters

Atmospheric Chemistry and Physics, 14, 9597-9612, 2014

Author(s): Q. Mu and H. Liao

We used the nested grid version of the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the interannual variations (IAVs) of aerosols over heavily polluted regions in China for years 2004–2012. The role of variations in meteorological parameters was quantified by a simulation with fixed anthropogenic emissions at year 2006 levels and changes in meteorological parameters over 2004–2012. Simulated PM2.5 (particles with a diameter of 2.5 ?m or less) aerosol concentrations exhibited large IAVs in North China (NC; 32–42° N, 110–120° E), with regionally averaged absolute percent departure from the mean (APDM) values of 17, 14, 14, and 11% in December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. Over South China (SC; 22–32° N, 110–120° E), the IAVs in PM2.5 were found to be the largest in JJA, with the regional mean APDM values of 14% in JJA and of about 9% in other seasons. The concentrations of PM2.5 over the Sichuan Basin (SCB; 27–33° N, 102–110° E) were simulated to have the smallest IAVs among the polluted regions examined in this work, with APDM values of 8–9% in all seasons. All aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon) were simulated to have the largest IAVs over NC in DJF, corresponding to the large variations in meteorological parameters over NC in this season. Process analyses were performed to identify the key meteorological parameters that determined the IAVs of different aerosol species in different regions. While the variations in temperature and specific humidity, which influenced the gas-phase formation of sulfate, jointly determined the IAVs of sulfate over NC in both DJF and JJA, wind (or convergence of wind) in DJF and precipitation in JJA were the dominant meteorological factors to influence IAVs of sulfate over SC and the SCB. The IAVs in temperature and specific humidity influenced gas-to-aerosol partitioning, which were the major factors that led to the IAVs of nitrate aerosol in China. The IAVs in wind and precipitation were found to drive the IAVs of organic carbon aerosol. We also compared the IAVs of aerosols simulated with variations in meteorological parameters alone with those simulated with variations in anthropogenic emissions alone; the variations in meteorological fields were found to dominate the IAVs of aerosols in northern and southern China over 2004–2012. Considering that the IAVs in meteorological fields are mainly associated with natural variability in the climate system, the IAVs in aerosol concentrations driven by meteorological parameters have important implications for the effectiveness of short-term air quality control strategies in China.

Posted on 16 September 2014 | 12:00 am


Seasonality of halogen deposition in polar snow and ice

Seasonality of halogen deposition in polar snow and ice

Atmospheric Chemistry and Physics, 14, 9613-9622, 2014

Author(s): A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante

The atmospheric chemistry of iodine and bromine in Polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine emission is attributed to biological communities in the open ocean and hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial–interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arctic and better understand potential links to sea ice. We find that bromine and iodine concentrations and Br enrichment (relative to sea salt content) in polar ice do vary seasonally in Arctic snow and Antarctic ice. Although seasonal variability in halogen emission sources is recorded by satellite-based observations of tropospheric halogen concentrations, seasonal patterns observed in snowpack are likely also influenced by photolysis-driven processes. Peaks of bromine concentration and Br enrichment in Arctic snow and Antarctic ice occur in spring and summer, when sunlight is present. A secondary bromine peak, observed at the end of summer, is attributed to bromine deposition at the end of the polar day. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions. These findings support previous observations of iodine peaks in winter snow strata attributed to the absence of sunlight-driven photolytic re-mobilisation of iodine from surface snow. Further investigation is required to confirm these proposed mechanisms explaining observations of halogens in polar snow and ice, and to evaluate the extent to which halogens may be applied as sea ice proxies.

Posted on 16 September 2014 | 12:00 am


Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe

Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe

Atmospheric Chemistry and Physics, 14, 9567-9581, 2014

Author(s): M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeri?evi?

Concentration of radon (222Rn) in the near-ground atmosphere has been measured quasi-continuously from January 2005 to December 2009 at two continental sites in Europe: Heidelberg (south-west Germany) and Krakow (southern Poland). The atmosphere was sampled at ca. 30 and 20 m above the local ground. Both stations were equipped with identical instruments. Regular observations of 222Rn were supplemented by measurements of surface fluxes of this gas in the Krakow urban area, using two different approaches. The measured concentrations of 222Rn varied at both sites in a wide range, from less than 2.0 Bq m?3 to approximately 40 Bq m?3 in Krakow and 35 Bq m?3 in Heidelberg. The mean 222Rn content in Krakow, when averaged over the entire observation period, was 30% higher than in Heidelberg (5.86 ± 0.09 and 4.50 ± 0.07 Bq m?3, respectively). Distinct seasonality of 222Rn signal is visible in the obtained time series of 222Rn concentration, with higher values recorded generally during late summer and autumn. The surface 222Rn fluxes measured in Krakow also revealed a distinct seasonality, with broad maximum observed during summer and early autumn and minimum during the winter. When averaged over a 5-year observation period, the night-time surface 222Rn flux was equal to 46.8 ± 2.4 Bq m?2 h?1. Although the atmospheric 222Rn levels at Heidelberg and Krakow appeared to be controlled primarily by local factors, it was possible to evaluate the "continental effect" in atmospheric 222Rn content between both sites, related to gradual build-up of 222Rn concentration in the air masses travelling between Heidelberg and Krakow. The mean value of this build-up was equal to 0.78 ± 0.12 Bq m?3. The measured minimum 222Rn concentrations at both sites and the difference between them was interpreted in the framework of a simple box model coupled with HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) analysis of air mass trajectories. The best fit of experimental data was obtained for the mean 222Rn flux over the European continent equal to 52 Bq m?2 h?1, the mean transport velocity of the air masses within the convective mixed layer of the planetary boundary layer (PBL) on their route from the Atlantic coast to Heidelberg and Krakow equal to 3.5 m s?1, the mean rate constant of 222Rn removal across the top of the PBL equal to the 222Rn decay constant and the mean height of the convective mixed layer equal to 1600 m.

Posted on 16 September 2014 | 12:00 am


Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs

Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs

Atmospheric Chemistry and Physics, 14, 9583-9596, 2014

Author(s): P. Chazette, F. Marnas, J. Totems, and X. Shang

The Infrared Atmospheric Sounding Interferometer (IASI) is a new generation spaceborne passive sensor mainly dedicated to meteorological applications. Operational Level-2 products have been available via the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) for several years. In particular, vertical profiles of water vapor measurements are retrieved from infrared radiances at the global scale. Nevertheless, the robustness of such products has to be checked because only a few validations have been reported. For this purpose, the field experiments that were held during the HyMeX and ChArMEx international programs are a very good opportunity. A H2O-Raman lidar was deployed on the Balearic island of Menorca and operated continuously for ~ 6 and ~ 3 weeks during fall 2012 (Hydrological cycle in the Mediterranean eXperiment – HyMeX) and summer 2013 (Chemistry–Aerosol Mediterranean Experiment – ChArMEx), respectively. It measured simultaneously the water vapor mixing ratio and aerosol optical properties. This article does not aim to describe the IASI operational H2O inversion algorithm, but to compare the vertical profiles derived from IASI onboard (meteorological operational) MetOp-A and the ground-based lidar measurements to assess the reliability of the IASI operational product for the water vapor retrieval in both the lower and middle troposphere. The links between water vapor contents and both the aerosol vertical profiles and the air mass origins are also studied. About 30 simultaneous observations, performed during nighttime in cloud free conditions, have been considered. For altitudes ranging from 2 to 7 km, root mean square errors (correlation) of ~ 0.5 g kg?1 (~ 0.77) and ~ 1.1 g kg?1 (~ 0.72) are derived between the operational IASI product and the available lidar profiles during HyMeX and ChArMEx, respectively. The values of both root mean square error and correlation are meaningful and show that the operational Level-2 product of the IASI-derived vertical water vapor mixing ratio can be considered for meteorological and climatic applications, at least in the framework of field campaigns.

Posted on 16 September 2014 | 12:00 am


Observations of the scale-dependent turbulence and evaluation of the flux–gradient relationship for sensible heat for a closed Douglas-fir canopy in very weak wind conditions

Observations of the scale-dependent turbulence and evaluation of the flux–gradient relationship for sensible heat for a closed Douglas-fir canopy in very weak wind conditions

Atmospheric Chemistry and Physics, 14, 9665-9676, 2014

Author(s): D. Vickers and C. K. Thomas

Observations of the scale-dependent turbulent fluxes, variances, and the bulk transfer parameterization for sensible heat above, within, and beneath a tall closed Douglas-fir canopy in very weak winds are examined. The daytime sub-canopy vertical velocity spectra exhibit a double-peak structure with peaks at timescales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime sub-canopy heat flux co-spectra. The daytime momentum flux co-spectra in the upper bole space and in the sub-canopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of the momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the sub-canopy contribute to upward transfer of momentum, consistent with the observed sub-canopy secondary wind speed maximum. For the smallest resolved scales in the canopy at nighttime, we find increasing vertical velocity variance with decreasing timescale, consistent with very small eddies possibly generated by wake shedding from the canopy elements that transport momentum, but not heat. Unusually large values of the velocity aspect ratio within the canopy were observed, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the very dense canopy.

The flux–gradient approach for sensible heat flux is found to be valid for the sub-canopy and above-canopy layers when considered separately in spite of the very small fluxes on the order of a few W m−2 in the sub-canopy. However, single-source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the sub-canopy and above-canopy layers. While sub-canopy Stanton numbers agreed well with values typically reported in the literature, our estimates for the above-canopy Stanton number were much larger, which likely leads to underestimated modeled sensible heat fluxes above dark warm closed canopies.

Posted on 16 September 2014 | 12:00 am


Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

Atmospheric Chemistry and Physics, 14, 9555-9566, 2014

Author(s): L. Kritten, A. Butz, M. P. Chipperfield, M. Dorf, S. Dhomse, R. Hossaini, H. Oelhaf, C. Prados-Roman, G. Wetzel, and K. Pfeilsticker

The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding – Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200–260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260–350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2–0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

Posted on 16 September 2014 | 12:00 am


Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dôme (1465 m a.s.l.), France

Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dôme (1465 m a.s.l.), France

Atmospheric Chemistry and Physics, 14, 9537-9554, 2014

Author(s): H. Holmgren, K. Sellegri, M. Hervo, C. Rose, E. Freney, P. Villani, and P. Laj

A Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) was used to evaluate the hygroscopic properties of aerosol particles measured at the Puy de Dôme research station in central France, periodically from September 2008 to January 2010, and almost continuously from October 2010 to December 2012. This high-altitude site is ideally situated to allow for both the upper part of the planetary boundary layer and the lower free troposphere to be sampled. The aim of the study is to investigate both the influence of year-to-year, seasonal and diurnal cycles, as well as the influence of air mass type on particle hygroscopicity and mixing state.

Results show that particle hygroscopicity increases with particle size and depends both on air mass type and on season. Average growth factor values, GFs, are lowest in winter (1.21 ± 0.13, 1.23 ± 0.18 and 1.38 ± 0.25 for 25, 50 and 165 nm particles, respectively) and highest in autumn (1.27 ± 0.11, 1.32 ± 0.12 and 1.49 ± 0.15 for 25, 50 and 165 nm particles, respectively). Particles are generally more hygroscopic at night than during the day. The seasonal and diurnal variations are likely to be strongly influenced by boundary layer dynamics. Furthermore, particles originating from oceanic and continental regions tend to be more hygroscopic than those measured in African and local air masses. The high hygroscopicity of oceanic aerosol can be explained by large proportions of inorganic aerosol and sea salts.

Aerosols measured at the Puy de Dôme display a high degree of external mixing, and hygroscopic growth spectra can be divided into three different hygroscopic modes: a less-hygroscopic mode (GF < 1.3), a hygroscopic mode (GF~1.3–1.7) and a more-hygroscopic mode (GF > 1.7). The majority of particles measured can be classified as being in either the less-hygroscopic mode or the hygroscopic mode, and only few of them have more-hygroscopic properties. The degree of external mixing, evaluated as the fraction of time when the aerosol is found with two or more aerosol populations with different hygroscopic properties, increases with particle size (average yearly values are 20, 28 and 45 {%} for 25, 50, and 165 nm particles, respectively). The degree of external mixing is more sensitive to season than to air mass type, and it is higher in the cold seasons than in the warm seasons.

With more than two years of nearly continuous measurements, this study gathers the results from one of the longest data sets of hygroscopic growth factor measurements to date, allowing a statistically relevant hygroscopic growth parameterization to be determined as a function of both air mass type and season.

Posted on 16 September 2014 | 12:00 am


Volatility basis-set approach simulation of organic aerosol formation in East Asia: implications for anthropogenic–biogenic interaction and controllable amounts

Volatility basis-set approach simulation of organic aerosol formation in East Asia: implications for anthropogenic–biogenic interaction and controllable amounts

Atmospheric Chemistry and Physics, 14, 9513-9535, 2014

Author(s): H. Matsui, M. Koike, Y. Kondo, A. Takami, J. D. Fast, Y. Kanaya, and M. Takigawa

Organic aerosol (OA) simulations using the volatility basis-set approach were made for East Asia and its outflow region. Model simulations were evaluated through comparisons with OA measured by aerosol mass spectrometers in and around Tokyo (at Komaba and Kisai in summer 2003 and 2004) and over the outflow region in East Asia (at Fukue and Hedo in spring 2009). The simulations with aging processes of organic vapors reproduced the mass concentrations, temporal variations, and formation efficiencies of observed OA at all of the sites reasonably well. As OA mass was severely underestimated in the simulations without the aging processes, the oxidations of organic vapors are essential for reasonable OA simulations over East Asia. By considering the aging processes, simulated OA concentrations increased from 0.24 to 1.28 ?g m?3 in the boundary layer over the whole of East Asia. OA formed from the interaction of anthropogenic and biogenic sources was also enhanced by the aging processes. The fraction of controllable OA was estimated to be 87% of total OA over the whole of East Asia, which indicated that most of the OA in our simulations were formed anthropogenically (from controllable combustion sources). A large portion of biogenic secondary OA (78% of biogenic secondary OA) was formed through the influence of anthropogenic sources. These fractions were higher than the fraction of anthropogenic emissions. An important reason for these higher controllable fractions was higher oxidant concentrations and the resulting faster oxidation rates of OA precursors by considering anthropogenic sources. Both the amounts (from 0.18 to 1.12 ?g m−3) and the fraction (from 75 to 87%) of controllable OA were increased by aging processes of organic vapors over East Asia.

Posted on 16 September 2014 | 12:00 am


Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM10 and PM2.5

Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM10 and PM2.5

Atmospheric Chemistry and Physics, 14, 9469-9479, 2014

Author(s): Y. Z. Tian, J. Wang, X. Peng, G. L. Shi, and Y. C. Feng

To quantify the total, direct and indirect impacts of fireworks individually, size-resolved PM samples were collected before, during and after a Chinese folk festival (Chinese New Year) in a megacity in China. Through chemical analysis and morphological characterisation, a strong influence of fireworks on the physicochemical characteristics of PM10 and PM2.5 was observed. The concentrations of many species exhibited an increasing trend during the heavy-firework period, especially for K+, Mg2+ and Cr; the results of the non-sea-salt ions demonstrated an anthropogenic influence on K+ and Mg2+. Then, source apportionment was conducted by receptor models and peak analysis (PA). The total influence of the fireworks was quantified by positive matrix factorisation (PMF), showing that the fireworks contributed higher fractions (23.40% for PM10 and 29.66% for PM2.5) during the heavy-firework period than during the light-firework period (4.28% for PM10 and 7.18% for PM2.5). The profiles of the total fireworks obtained by two independent methods (PMF and peak analysis) were consistent, with higher abundances of K+, Al, Si, Ca and organic carbon (OC). Finally, the individual contributions of the direct and indirect impacts of fireworks were quantified by chemical mass balance (CMB). The percentage contributions of resuspended dust, biomass combustion and direct fireworks were 36.8 ± 8.37%, 14.1 ± 2.82% and 44.4 ± 8.26%, respectively, for PM10 and 34.9 ± 4.19%, 16.6 ± 3.05% and 52.5 ± 9.69%, respectively, for PM2.5, in terms of the total fireworks. The quantification of the total, direct and indirect impacts of fireworks in the ambient PM gives a original contribution for understanding the physicochemical characteristics and mechanisms of such high-intensity anthropogenic activities.

Posted on 16 September 2014 | 12:00 am


Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves

Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves

Atmospheric Chemistry and Physics, 14, 9481-9509, 2014

Author(s): D. P. Grosvenor, J. C. King, T. W. Choularton, and T. Lachlan-Cope

Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C ice shelf, just south of the recently collapsed Larsen B ice shelf. Aircraft observations showed the presence of föhn jets descending near the ice shelf surface with maximum wind speeds at 250–350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ~9 h before the aircraft observations were made since the model föhn jets died down after this. This was despite the fact that the model was nudged towards analysis for heights greater than ~1.15 km above the surface.

Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of automatic weather station (AWS) stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a~situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. Our results therefore suggest that reduced upwind blocking, due to wind speed increases or stability decreases, might not result in an increased likelihood of föhn events over the Antarctic Peninsula, as previously suggested.

The surface energy budget of the model during the melting periods showed that the net downwelling short-wave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of föhn events is likely to be the most important factor for increased melting relative to non-föhn days. The results also indicate that the warmth of the föhn jets through sensible heat flux ("SH") may not be critical in causing melting beyond boundary layer stabilisation effects (which may help to prevent cloud cover and suppress loss of heat by convection) and are actually cancelled by latent heat flux ("LH") effects (snow ablation). It was found that ground heat flux ("GRD") was likely to be an important factor when considering the changing surface energy budget for the southern regions of the ice shelf as the climate warms.

Posted on 16 September 2014 | 12:00 am


Links between satellite-retrieved aerosol and precipitation

Links between satellite-retrieved aerosol and precipitation

Atmospheric Chemistry and Physics, 14, 9677-9694, 2014

Author(s): E. Gryspeerdt, P. Stier, and D. G. Partridge

Many theories have been proposed detailing how aerosols might impact precipitation, predicting both increases and decreases depending on the prevailing meteorological conditions and aerosol type. In convective clouds, increased aerosol concentrations have been speculated to invigorate convective activity. Previous studies have shown large increases in precipitation with increasing aerosol optical depth, concluding an aerosol effect on precipitation. Our analysis reveals that these studies may have been influenced by cloud effects on the retrieved aerosol, as well as by meteorological covariations.

We use a regime-based approach to separate out different cloud regimes, allowing for the study of aerosol–cloud interactions in individual cloud regimes. We account for the influence of cloud properties on the aerosol retrieval and make use of the diurnal sampling of the TRMM satellite and the TRMM merged precipitation product to investigate the precipitation development.

We find that whilst there is little effect on precipitation at the time of the aerosol retrieval, in the 6 h after the aerosol retrieval, there is an increase in precipitation from cloud in high-aerosol environments, consistent with the invigoration hypothesis. Increases in lightning flash count with increased aerosol are also observed in this period. The invigoration effect appears to be dependent on the cloud-top temperature, with clouds with tops colder than 0 °C showing increases in precipitation at times after the retrieval, as well as increases in wet scavenging. Warm clouds show little change in precipitation development with increasing aerosol, suggesting ice processes are important for the invigoration of precipitation.

Posted on 16 September 2014 | 12:00 am


Greenhouse gas network design using backward Lagrangian particle dispersion modelling − Part 1: Methodology and Australian test case

Greenhouse gas network design using backward Lagrangian particle dispersion modelling − Part 1: Methodology and Australian test case

Atmospheric Chemistry and Physics, 14, 9363-9378, 2014

Author(s): T. Ziehn, A. Nickless, P. J. Rayner, R. M. Law, G. Roff, and P. Fraser

This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.

Posted on 10 September 2014 | 12:00 am


Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

Atmospheric Chemistry and Physics, 14, 9403-9450, 2014

Author(s): T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard

The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007–2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice–ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave–turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice–ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

Posted on 10 September 2014 | 12:00 am


The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite

The effects of nitrate on the heterogeneous uptake of sulfur dioxide on hematite

Atmospheric Chemistry and Physics, 14, 9451-9467, 2014

Author(s): L. D. Kong, X. Zhao, Z. Y. Sun, Y. W. Yang, H. B. Fu, S. C. Zhang, T. T. Cheng, X. Yang, L. Wang, and J. M. Chen

Nitrate is often found to be associated with atmospheric particles. Surface nitrate can change the hygroscopicity of these particles, and thus impact their chemical reactivity. However, the influence of nitrate on heterogeneous reactions of atmospheric trace gases is poorly understood. In this work, the effects of nitrate on heterogeneous conversion of SO2 with hematite at 298 K are investigated using an in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and a White cell coupled with Fourier transform infrared spectroscopy (White cell-FTIR). It is found that nitrate participates in heterogeneous reactions of SO2, accelerates the formation rate of sulfate, and leads to the formation of surface-adsorbed HNO3 and gas-phase N2O and HONO. The results indicate that low to moderate amounts of nitrate significantly enhance the reactivity of hematite–nitrate mixtures, the uptake of SO2, and the formation of sulfate on hematite. For mixtures, the sample containing 24% nitrate exhibits the highest sulfate formation rate, and its corresponding uptake coefficient calculated by geometric surface area is about 5.5 times higher than that of hematite alone. The sample containing 48% nitrate presents the highest Brunauer–Emmett–Teller (BET) uptake coefficient, and the value is about 8 times higher than that of pure hematite. No uptake of SO2 and formation of sulfate are observed on pure nitrate. Evidence presented herein implies a significant contribution of the unreleased HNO3 and HONO in the particles for the conversion of SO2 and the enhanced formation of sulfate in the atmosphere. A possible mechanism for the influence of nitrate on the heterogeneous conversion of SO2 on hematite is proposed, and atmospheric implications based on these results are discussed.

Posted on 10 September 2014 | 12:00 am


Will the role of intercontinental transport change in a changing climate?

Will the role of intercontinental transport change in a changing climate?

Atmospheric Chemistry and Physics, 14, 9379-9402, 2014

Author(s): T. Glotfelty, Y. Zhang, P. Karamchandani, and D. G. Streets

Intercontinental transport of atmospheric pollution (ITAP) can offset the impact of local emission control efforts, impact human and ecosystem health, and play a role in climate forcing. This study aims to determine the role of ITAP caused by East Asian anthropogenic emissions (EAAEs) under current and future emission and climate scenarios. The contribution from EAAEs is determined using a "brute force method" in which results from simulations with and without EAAEs are compared. ITAP from East Asia is enhanced in the future due to faster wind speeds aloft and a stronger low pressure center near eastern Russia that facilitate enhanced westerly export in the free troposphere and stronger southerly transport near the surface, increased gaseous precursor emissions, and increased temperatures. As a result, the contribution of ozone (O3) generated by EAAEs to the global average O3 mixing ratio increases by ~0.8 ppb from 1.2 ppb in 2001 to 2.0 ppb in 2050. The contribution of PM2.5 generated by EAAEs to the global PM2.5 level increases by ~0.07 ?g m?3 from 0.32 ?g m?3 in 2001 to 0.39 ?g m?3 in 2050, despite a non-homogenous response in PM2.5 resulting from cloud and radiative feedbacks. EAAEs can increase East Asian biogenic secondary organic aerosol by 10–81%, indicating that it is largely controllable. EAAEs also increase the deposition of nitrogen, black carbon, and mercury both locally and downwind, implying that they may play a role in climate feedbacks and ecosystem health of these regions. These results show that EAAEs have a large impact on global air quality and climate, especially on downwind regions. Such impacts may be enhanced under future climate and emission scenarios, demonstrating a need to synergize global pollution control and climate mitigation efforts.

Posted on 10 September 2014 | 12:00 am


Evaluation of IASI-derived dust aerosol characteristics over the tropical belt

Evaluation of IASI-derived dust aerosol characteristics over the tropical belt

Atmospheric Chemistry and Physics, 14, 9343-9362, 2014

Author(s): V. Capelle, A. Chédin, M. Siméon, C. Tsamalis, C. Pierangelo, M. Pondrom, C. Crevoisier, L. Crepeau, and N. A. Scott

IASI (Infrared Atmospheric Sounder Interferometer)-derived monthly mean infrared (10 ?m) dust aerosol optical depth (AOD) and altitude are evaluated against ground-based Aerosol RObotic NETwork of sun photometers (AERONET) measurements of the 500 nm coarse-mode AOD and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements of altitude at 38 AERONET sites (sea and land) within the tropical belt (30° N–30° S). The period covered extends from July 2007 to June 2013. The evaluation goes through the analysis of Taylor diagrams and box-and-whiskers plots, separating situations over oceanic regions and over land. For the AOD, such an evaluation raises the problem of the difference between the two spectral domains used: infrared for IASI and visible for AERONET. Consequently, the two measurements do not share the same metrics. For that reason, AERONET coarse-mode AOD is first "translated" into IASI-equivalent infrared AOD. This is done by the determination, site by site, of an infrared to visible AOD ratio. Because translating visible coarse-mode AOD into infrared AOD requires accurate knowledge of variables, such as the infrared refractive index or the particle size distribution, quantifying the bias between these two sources of AOD is not straightforward. This problem is detailed in this paper, in particular in Appendix A. For the sites over oceanic regions, the overall AOD temporal correlation comes to 0.86 for 786 items (IASI and AERONET monthly mean bins). The overall normalized standard deviation (i.e. ratio of the standard deviation of the test data (IASI) to that of the reference data (AERONET)) is 0.93, close to the desired value of 1. Over land, essentially desert, correlation is 0.74 for 619 items and the normalized standard deviation is 0.86. This slight but significant degradation over land most probably results from the greater complexity of the surface (heterogeneity, elevation) and, to a lesser extent, to the episodic presence of dust within the boundary layer (particularly for sites close to active sources) to which IASI, as any thermal infrared sounder, is poorly sensitive, unlike AERONET. Site by site, disparities appear that are principally due to either the insufficient number of AERONET observations throughout the period considered, to the complexity of the location leading to the mixing of several aerosol types (in the case of the Persian Gulf, for example), to surface heterogeneities (elevation, emissivity, etc.), or to the use of a single aerosol model (called "MITR"). Results using another aerosol model, with a different refractive index, are presented and discussed. Concerning altitude over oceanic regions, correlation is 0.70 for 853 items and the normalized standard deviation is 0.92. A systematic bias of ?0.4 km (IASI–CALIOP) is observed, with a standard deviation of 0.48 km. This result is satisfactory, considering the important differences between the two instruments (space–time coverage, definition of the altitude). Altitude results over land, essentially over deserts, are not satisfactory for a majority of sites. The smaller sensitivity of IASI to altitude compared to its sensitivity to AOD, added to the difficulties met for the determination of the AOD over land (surface heterogeneities), explain this result. Work is in progress to solve this difficulty.

We conclude that the present results demonstrate the usefulness of IASI data, which are planned to cover a long period of time, as an additional constraint to a better knowledge of the impact of aerosols on the climate system.

Posted on 10 September 2014 | 12:00 am


On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations

On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations

Atmospheric Chemistry and Physics, 14, 9295-9316, 2014

Author(s): O. Stein, M. G. Schultz, I. Bouarar, H. Clark, V. Huijnen, A. Gaudel, M. George, and C. Clerbaux

Despite the developments in the global modelling of chemistry and of the parameterization of the physical processes, carbon monoxide (CO) concentrations remain underestimated during Northern Hemisphere (NH) winter by most state-of-the-art chemistry transport models. The consequential model bias can in principle originate from either an underestimation of CO sources or an overestimation of its sinks. We address both the role of surface sources and sinks with a series of MOZART (Model for Ozone And Related Tracers) model sensitivity studies for the year 2008 and compare our results to observational data from ground-based stations, satellite observations, and vertical profiles from measurements on passenger aircraft. In our base case simulation using MACCity (Monitoring Atmospheric Composition and Climate project) anthropogenic emissions, the near-surface CO mixing ratios are underestimated in the Northern Hemisphere by more than 20 ppb from December to April, with the largest bias of up to 75 ppb over Europe in January. An increase in global biomass burning or biogenic emissions of CO or volatile organic compounds (VOCs) is not able to reduce the annual course of the model bias and yields concentrations over the Southern Hemisphere which are too high. Raising global annual anthropogenic emissions with a simple scaling factor results in overestimations of surface mixing ratios in most regions all year round. Instead, our results indicate that anthropogenic CO and, possibly, VOC emissions in the MACCity inventory are too low for the industrialized countries only during winter and spring. Reasonable agreement with observations can only be achieved if the CO emissions are adjusted seasonally with regionally varying scaling factors. A part of the model bias could also be eliminated by exchanging the original resistance-type dry deposition scheme with a parameterization for CO uptake by oxidation from soil bacteria and microbes, which reduces the boreal winter dry deposition fluxes. The best match to surface observations, satellite retrievals, and aircraft observations was achieved when the modified dry deposition scheme was combined with increased wintertime road traffic emissions over Europe and North America (factors up to 4.5 and 2, respectively). One reason for the apparent underestimation of emissions may be an exaggerated downward trend in the Representative Concentration Pathway (RCP) 8.5 scenario in these regions between 2000 and 2010, as this scenario was used to extrapolate the MACCity emissions from their base year 2000. This factor is potentially amplified by a lack of knowledge about the seasonality of emissions. A methane lifetime of 9.7 yr for our basic model and 9.8 yr for the optimized simulation agrees well with current estimates of global OH, but we cannot fully exclude a potential effect from errors in the geographical and seasonal distribution of OH concentrations on the modelled CO.

Posted on 9 September 2014 | 12:00 am


Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

Atmospheric Chemistry and Physics, 14, 9259-9277, 2014

Author(s): S. Chatani, M. Amann, A. Goel, J. Hao, Z. Klimont, A. Kumar, A. Mishra, S. Sharma, S. X. Wang, Y. X. Wang, and B. Zhao

A regional air quality simulation framework including the Weather Research and Forecasting modeling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitoring, ozonesondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around northeastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

Posted on 9 September 2014 | 12:00 am


Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong

Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong

Atmospheric Chemistry and Physics, 14, 9279-9293, 2014

Author(s): X. H. H. Huang, Q. J. Bian, P. K. K. Louie, and J. Z. Yu

Hourly measurements of elemental carbon (EC) and organic carbon (OC) were made at Mong Kok, a roadside air quality monitoring station in Hong Kong, for a year, from May 2011 to April 2012. The monthly average EC concentrations were 3.8–4.9 ?g C m?3, accounting for 9.2–17.7% of the PM2.5 mass (21.5–49.7 ?g m?3). The EC concentrations showed little seasonal variation and peaked twice daily, coinciding with the traffic rush hours of a day. Strong correlations were found between EC and NOx concentrations, especially during the rush hours in the morning, confirming vehicular emissions as the dominant source of EC at this site. The analysis by means of the minimum OC / EC ratio approach to determine the OC / EC ratio representative of primary vehicular emissions yields a value of 0.5 for (OC / EC)vehicle. By applying the derived (OC / EC)vehicle ratio to the data set, the monthly average vehicle-related OC was estimated to account for 17–64% of the measured OC throughout the year. Vehicle-related OC was also estimated using receptor modeling of a combined data set of hourly NOx, OC, EC and volatile organic compounds characteristic of different types of vehicular emissions. The OCvehicle estimations by the two different approaches were in good agreement. When both EC and vehicle-derived organic matter (OM) (assuming an OM-to-OC ratio of 1.4) are considered, vehicular carbonaceous aerosols contributed ~ 7.3 ?g m?3 to PM2.5, accounting for ~ 20% of PM2.5 mass (38.3 ?g m?3) during winter, when Hong Kong received significant influence of air pollutants transported from outside, and ~ 30% of PM2.5 mass (28.2 ?g m?3) during summertime, when local emission sources were dominant. A reduction of 3.8 ?g m?3 in vehicular carbonaceous aerosols was estimated during 07:00–11:00 (i.e., rush hours on weekdays) on Sundays and public holidays. This could mainly be attributed to less on-road public transportation (e.g., diesel-powered buses) in comparison with non-holidays. These multiple lines of evidence confirm local vehicular emissions as an important source of PM2.5 in an urban roadside environment and suggest the importance of vehicular emission control in reducing exposure to PM2.5 in busy roadside environments.

Posted on 9 September 2014 | 12:00 am


Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

Atmospheric Chemistry and Physics, 14, 9317-9341, 2014

Author(s): K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr

The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission data set of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980–2010. This data set, developed under the Monitoring Atmospheric Composition and Climate project (MACC), is called MEGAN–MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr?1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2%.

Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia.

MEGAN–MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the data sets especially for Australia, Southeast Asia and South America. MEGAN–MACC estimates of isoprene, ?-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

Posted on 9 September 2014 | 12:00 am


Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations

Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations

Atmospheric Chemistry and Physics, 14, 9249-9258, 2014

Author(s): S. O'Doherty, M. Rigby, J. Mühle, D. J. Ivy, B. R. Miller, D. Young, P. G. Simmonds, S. Reimann, M. K. Vollmer, P. B. Krummel, P. J. Fraser, L. P. Steele, B. Dunse, P. K. Salameh, C. M. Harth, T. Arnold, R. F. Weiss, J. Kim, S. Park, S. Li, C. Lunder, O. Hermansen, N. Schmidbauer, L. X. Zhou, B. Yao, R. H. J. Wang, A. J. Manning, and R. G. Prinn

High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 ± 0.04 and 0.7 ± 0.02 mW m−2 in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1?) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr?1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr?1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr?1 of HFC-143a and 21 ± 11 Gg yr?1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 ± 5% yr?1 for HFC-143a and 14 ± 11% yr?1 for HFC-32.

Posted on 9 September 2014 | 12:00 am


Estimation of mineral dust long-wave radiative forcing: sensitivity study to particle properties and application to real cases in the region of Barcelona

Estimation of mineral dust long-wave radiative forcing: sensitivity study to particle properties and application to real cases in the region of Barcelona

Atmospheric Chemistry and Physics, 14, 9213-9231, 2014

Author(s): M. Sicard, S. Bertolín, M. Mallet, P. Dubuisson, and A. Comerón

The aerosol radiative effect in the long-wave (LW) spectral range is sometimes not taken into account in atmospheric aerosol forcing studies at local scale because the LW aerosol effect is assumed to be negligible. At regional and global scale this effect is partially taken into account: aerosol absorption is taken into account but scattering is still neglected. However, aerosols with strong absorbing and scattering properties in the LW region, like mineral dust, can have a non-negligible radiative effect in the LW spectral range (both at surface and top of the atmosphere) which can counteract their cooling effect occurring in the short-wave spectral range. The first objective of this research is to perform a sensitivity study of mineral dust LW radiative forcing (RF) as a function of dust microphysical and optical properties using an accurate radiative transfer model which can compute vertically resolved short-wave and long-wave aerosol RF. Radiative forcing simulations in the LW range have shown an important sensitivity to the following parameters: aerosol load, radius of the coarse mode, refractive index, aerosol vertical distribution, surface temperature and surface albedo. The scattering effect has been estimated to contribute to the LW RF up to 18% at the surface and up to 38% at the top of the atmosphere. The second objective is the estimation of the short-wave and long-wave dust RF for 11 dust outbreaks observed in Barcelona. At the surface, the LW RF varies between +2.8 and +10.2 W m?2, which represents between 11 and 26% (with opposite sign) of the SW component, while at the top of the atmosphere the LW RF varies between +0.6 and +5.8 W m?2, which represents between 6 and 26% (with opposite sign) of the SW component.

Posted on 8 September 2014 | 12:00 am


Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

Atmospheric Chemistry and Physics, 14, 9233-9247, 2014

Author(s): M. J. Tang, R. A. Cox, and M. Kalberer

Diffusion of gas molecules to the surface is the first step for all gas–surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (https://sites.google.com/site/mingjintang/home/diffusion).

Posted on 8 September 2014 | 12:00 am


Comparison of the predictions of two road dust emission models with the measurements of a mobile van

Comparison of the predictions of two road dust emission models with the measurements of a mobile van

Atmospheric Chemistry and Physics, 14, 9155-9169, 2014

Author(s): M. Kauhaniemi, A. Stojiljkovic, L. Pirjola, A. Karppinen, J. Härkönen, K. Kupiainen, L. Kangas, M. A. Aarnio, G. Omstedt, B. R. Denby, and J. Kukkonen

The predictions of two road dust suspension emission models were compared with the on-site mobile measurements of suspension emission factors. Such a quantitative comparison has not previously been reported in the reviewed literature. The models used were the Nordic collaboration model NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and the Swedish–Finnish FORE model (Forecasting Of Road dust Emissions). These models describe particulate matter generated by the wear of road surface due to traction control methods and processes that control the suspension of road dust particles into the air. An experimental measurement campaign was conducted using a mobile laboratory called SNIFFER, along two selected road segments in central Helsinki in 2007 and 2008. The suspended PM10 concentration was measured behind the left rear tyre and the street background PM10 concentration in front of the van. Both models reproduced the measured seasonal variation of suspension emission factors fairly well during both years at both measurement sites. However, both models substantially under-predicted the measured emission values. The article illustrates the challenges in conducting road suspension measurements in densely trafficked urban conditions, and the numerous requirements for input data that are needed for accurately applying road suspension emission models.

Posted on 8 September 2014 | 12:00 am


Improvement and further development in CESM/CAM5: gas-phase chemistry and inorganic aerosol treatments

Improvement and further development in CESM/CAM5: gas-phase chemistry and inorganic aerosol treatments

Atmospheric Chemistry and Physics, 14, 9171-9200, 2014

Author(s): J. He and Y. Zhang

Gas-phase chemistry and subsequent gas-to-particle conversion processes such as new particle formation, condensation, and thermodynamic partitioning have large impacts on air quality, climate, and public health through influencing the amounts and distributions of gaseous precursors and secondary aerosols. Their roles in global air quality and climate are examined in this work using the Community Earth System Model version 1.0.5 (CESM1.0.5) with the Community Atmosphere Model version 5.1 (CAM5.1) (referred to as CESM1.0.5/CAM5.1). CAM5.1 includes a simple chemistry that is coupled with a 7-mode prognostic Modal Aerosol Model (MAM7). MAM7 includes classical homogenous nucleation (binary and ternary) and activation nucleation (empirical first-order power law) parameterizations, and a highly simplified inorganic aerosol thermodynamics treatment that only simulates particulate-phase sulfate and ammonium. In this work, a new gas-phase chemistry mechanism based on the 2005 Carbon Bond Mechanism for Global Extension (CB05_GE) and several advanced inorganic aerosol treatments for condensation of volatile species, ion-mediated nucleation (IMN), and explicit inorganic aerosol thermodynamics for sulfate, ammonium, nitrate, sodium, and chloride have been incorporated into CESM/CAM5.1-MAM7. Compared to the simple gas-phase chemistry, CB05_GE can predict many more gaseous species, and thus could improve model performance for PM2.5, PM10, PM components, and some PM gaseous precursors such as SO2 and NH3 in several regions as well as aerosol optical depth (AOD) and cloud properties (e.g., cloud fraction (CF), cloud droplet number concentration (CDNC), and shortwave cloud forcing, SWCF) on the global scale. The modified condensation and aqueous-phase chemistry could further improve the prediction of additional variables such as HNO3, NO2, and O3 in some regions, and new particle formation rate (J) and AOD on the global scale. IMN can improve the prediction of secondary PM2.5 components, PM2.5, and PM10 over Europe as well as AOD and CDNC on the global scale. The explicit inorganic aerosol thermodynamics using the ISORROPIA II model improves the prediction of all major PM2.5 components and their gaseous precursors in some regions as well as downwelling shortwave radiation, SWCF, and cloud condensation nuclei at a supersaturation of 0.5% on the global scale. For simulations of 2001–2005 with all the modified and new treatments, the improved model predicts that on global average, SWCF increases by 2.7 W m?2, reducing the normalized mean bias (NMB) of SWCF from ?5.4 to 1.2%. Uncertainties in emissions can largely explain the inaccurate prediction of precursor gases (e.g., SO2, NH3, and NO) and primary aerosols (e.g., black carbon and primary organic matter). Additional factors leading to the discrepancies between model predictions and observations include assumptions associated with equilibrium partitioning for fine particles assumed in ISORROPIA II, irreversible gas/particle mass transfer treatment for coarse particles, uncertainties in model treatments such as dust emissions, secondary organic aerosol formation, multi-phase chemistry, cloud microphysics, aerosol–cloud interaction, dry and wet deposition, and model parameters (e.g., accommodation coefficients and prefactors of the nucleation power law) as well as uncertainties in model configuration such as the use of a coarse-grid resolution.

Posted on 8 September 2014 | 12:00 am


Technical Note: Application of positive matrix factor analysis in heterogeneous kinetics studies utilizing the mixed-phase relative rates technique

Technical Note: Application of positive matrix factor analysis in heterogeneous kinetics studies utilizing the mixed-phase relative rates technique

Atmospheric Chemistry and Physics, 14, 9201-9211, 2014

Author(s): Y. Liu, S.-M. Li, and J. Liggio

The mixed-phase relative rates approach for determining aerosol particle organic heterogeneous reaction kinetics is often performed utilizing mass spectral tracers as a proxy for particle-phase reactant concentration. However, this approach may be influenced by signal contamination from oxidation products during the experiment. In the current study, the mixed-phase relative rates technique has been improved by combining a positive matrix factor (PMF) analysis with electron ionization aerosol mass spectrometry (unit-mass resolution), thereby removing the influence of m / z fragments from reaction products on the reactant signals. To demonstrate the advantages of this approach, the heterogeneous reaction between OH radicals and citric acid (CA) was investigated using a photochemical flow tube coupled to a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). The measured heterogeneous rate constant (k2) of citric acid toward OH was (3.31 ± 0.29) × 10−12 cm3 molecule?1 s?1 at 298 K and (30 ± 3)% relative humidity (RH) and was several times greater than the results utilizing individual m / z fragments. This phenomenon was further evaluated for particulate-phase organophosphates (triphenyl phosphate (TPhP), tris-1,3-dichloro-2-propyl phosphate (TDCPP) and tris-2-ethylhexyl phosphate (TEHP)), leading to k2 values significantly larger than previously reported. The results suggest that heterogeneous kinetics can be significantly underestimated when the structure of the products is highly similar to the reactant and when a non-molecular tracer is measured with a unit-mass resolution aerosol mass spectrometer. The results also suggest that the heterogeneous lifetime of organic aerosol in models can be overestimated due to underestimated OH uptake coefficients. Finally, a comparison of reported rate constants implies that the heterogeneous oxidation of aerosols will be dependent upon a number of factors related to the reaction system, and that a single rate constant for one system cannot be universally applied under all conditions.

Posted on 8 September 2014 | 12:00 am


Ozone vegetation damage effects on gross primary productivity in the United States

Ozone vegetation damage effects on gross primary productivity in the United States

Atmospheric Chemistry and Physics, 14, 9137-9153, 2014

Author(s): X. Yue and N. Unger

We apply an off-line process-based vegetation model (the Yale Interactive Terrestrial Biosphere model) to assess the impacts of ozone (O3) vegetation damage on gross primary productivity (GPP) in the United States during the past decade (1998–2007). The model's GPP simulation is evaluated at 40 sites of the North American Carbon Program (NACP) synthesis. The ecosystem-scale model version reproduces interannual variability and seasonality of GPP at most sites, especially in croplands. Inclusion of the O3 damage impact decreases biases of simulated GPP at most of the NACP sites. The simulation with the O3 damage effect reproduces 64% of the observed variance in summer GPP and 42% on the annual average. Based on a regional gridded simulation over the US, summertime average O3-free GPP is 6.1 g C m?2 day?1 (9.5 g C m?2 day?1 in the east of 95° W and 3.9 g C m?2 day?1 in the west). O3 damage decreases GPP by 4–8% on average in the eastern US and leads to significant decreases of 11–17% in east coast hot spots. Sensitivity simulations show that a 25% decrease in surface O3 concentration halves the average GPP damage to only 2–4%, suggesting the substantial co-benefits to ecosystem health that may be achieved via O3 air pollution control.

Posted on 5 September 2014 | 12:00 am


Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

Atmospheric Chemistry and Physics, 14, 9105-9128, 2014

Author(s): A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann

This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow during the Lagrangian-type "Hill Cap Cloud Thuringia 2010" experiment (HCCT-2010), which was performed in September and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow conditions (i.e. representative air masses at the different measurement sites). The primary goal of the present study was to identify time periods during the 6-week duration of the experiment in which these conditions were fulfilled and therefore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) local flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert tracers, SF6 tracer experiments in the experiment area, and regional modelling. This study represents the first application of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross-correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type experiment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as reference cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the measured chemical and physical data during HCCT-2010 (see http://www.atmos-chem-phys.net/special_issue287.html).

Results obtained from the statistical flow analyses and regional-scale modelling performed in this study indicate the existence of a strong link between the three measurement sites during the FCEs and NCEs, particularly under conditions of constant southwesterly flow, high wind speeds and slightly stable stratification. COD analyses performed using continuous measurements of ozone and particle (49 nm diameter size bin) concentrations at the three sites revealed, particularly for COD values < 0.1, very consistent time series (i.e. close links between air masses at the different sites). The regional-scale model simulations provided support for the findings of the other flow condition analyses. Cross-correlation analyses revealed typical overflow times of ~15–30 min between the upwind and downwind valley sites under connected flow conditions. The results described here, together with those obtained from the SF6 tracer experiments performed during the experiment, clearly demonstrate that (a) under appropriate meteorological conditions a Lagrangian-type approach is valid and (b) the connected flow validation procedure developed in this work is suitable for identifying such conditions. Overall, it is anticipated that the methods and tools developed and applied in the present study will prove useful in the identification of suitable meteorological and connected airflow conditions during future Lagrangian-type hill cap cloud experiments.

Posted on 5 September 2014 | 12:00 am


Uptake and emission of VOCs near ground level below a mixed forest at Borden, Ontario

Uptake and emission of VOCs near ground level below a mixed forest at Borden, Ontario

Atmospheric Chemistry and Physics, 14, 9087-9097, 2014

Author(s): M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown

Understanding of the atmosphere/forest canopy exchange of volatile organic compounds (VOCs) requires insight into the deposition, emission, and chemical reactions of VOCs below the canopy. Between 18 July and 9 August 2009, VOCs were measured with proton-transfer-reaction mass spectrometry (PTR-MS) at six heights between 1 and 6 m beneath a 23 m high mixed-forest canopy. Measured VOCs included methanol, isoprene, acetone, methacrolein and methyl vinyl ketone (MACR + MVK), monoterpenes, and sesquiterpenes. There are pronounced differences in the behaviour of isoprene and its by-products and that of the terpenes. Non-terpene mixing ratios increase with height, suggesting predominantly downward fluxes. In contrast, the terpene mixing ratios decrease with height, suggesting upward fluxes. A 1-D canopy model was used to compare results to measurements with and without surface deposition of isoprene and MACR + MVK and emissions of monoterpenes and sesquiterpenes. Results suggest deposition velocities of 2.7 mm s?1 for isoprene and 1.2 mm s?1 for MACR + MVK and daytime surface emission rates of 63 ?g m?2 h?1 for monoterpenes. The modelled isoprene surface deposition is approximately 2% of the canopy-top isoprene emissions and the modelled emissions of monoterpenes comprise approximately 15 to 27% of the canopy-top monoterpene emissions to the atmosphere. These results suggest that surface monoterpene emissions are significant for forest canopy/atmosphere exchange for this mixed-forest location and surface uptake is relatively small for all the species measured in this study.

Posted on 5 September 2014 | 12:00 am


Corrigendum to "Microphysical Process Rates and Global Aerosol-Cloud Interactions" published in Atmos. Chem. Phys., 13, 9855–9867, 2013

Corrigendum to "Microphysical Process Rates and Global Aerosol-Cloud Interactions" published in Atmos. Chem. Phys., 13, 9855–9867, 2013

Atmospheric Chemistry and Physics, 14, 9099-9103, 2014

Author(s): A. Gettelman, H. Morrison, C. R. Terai, and R. Wood

A mistake swapped process rates between autoconversion and accretion in global model solutions. Revised figures are presented. The accretion to autoconversion ratio in the model does increase with Liquid Water Path (LWP) as in the steady state model but biases remain. Simulated autoconversion rates are too high. Adjusting process rates following the steady state model ideas leads to an improvement in process rates. The main conclusion is unaffected.

Posted on 5 September 2014 | 12:00 am


Long-term trends in aerosol optical characteristics in the Po Valley, Italy

Long-term trends in aerosol optical characteristics in the Po Valley, Italy

Atmospheric Chemistry and Physics, 14, 9129-9136, 2014

Author(s): J. P. Putaud, F. Cavalli, S. Martins dos Santos, and A. Dell'Acqua

Aerosol properties have been monitored by ground-based in situ and remote sensing measurements at the station for atmospheric research located in Ispra, on the edge of the Po Valley, for almost one decade. In situ measurements are performed according to Global Atmosphere Watch recommendations, and quality is assured through the participation in regular inter-laboratory comparisons. Sun-photometer data are produced by the Aerosol Robotic Network (AERONET). Data show significant decreasing trends over the 2004–2010 period for a number of variables, including particulate matter (PM) mass concentration, aerosol scattering, backscattering and absorption coefficients, and aerosol optical thickness (AOT). In situ measurement data show no significant trends in the aerosol backscatter ratio, but they do show a significant decreasing trend of about ?0.7 ± 0.3% yr?1 in the aerosol single scattering albedo (SSA) in the visible light range. Similar trends are observed in the SSA retrieved from sun-photometer measurements. Correlations appear between in situ PM mass concentration and aerosol scattering coefficient, on the one hand, and elemental carbon (EC) concentration and aerosol absorption coefficient, on the other hand. However, no increase in the EC / PM ratio was observed, which could have explained the decrease in SSA. The application of a simple approximation to calculate the direct radiative forcing by aerosols suggests a significant diminution in their cooling effect, mainly due to the decrease in AOT. Applying the methodology we present to those sites, where the necessary suite of measurements is available, would provide important information to inform future policies for air-quality enhancement and fast climate change mitigation.

Posted on 5 September 2014 | 12:00 am


Countergradient heat flux observations during the evening transition period

Countergradient heat flux observations during the evening transition period

Atmospheric Chemistry and Physics, 14, 9077-9085, 2014

Author(s): E. Blay-Carreras, E. R. Pardyjak, D. Pino, D. C. Alexander, F. Lohou, and M. Lothon

Gradient-based turbulence models generally assume that the buoyancy flux ceases to introduce heat into the surface layer of the atmospheric boundary layer in temporal consonance with the gradient of the local virtual potential temperature. Here, we hypothesize that during the evening transition a delay exists between the instant when the buoyancy flux goes to zero and the time when the local gradient of the virtual potential temperature indicates a sign change. This phenomenon is studied using a range of data collected over several intensive observational periods (IOPs) during the Boundary Layer Late Afternoon and Sunset Turbulence field campaign conducted in Lannemezan, France. The focus is mainly on the lower part of the surface layer using a tower instrumented with high-speed temperature and velocity sensors.

The results from this work confirm and quantify a flux-gradient delay. Specifically, the observed values of the delay are ~ 30–80 min. The existence of the delay and its duration can be explained by considering the convective timescale and the competition of forces associated with the classical Rayleigh–Bénard problem. This combined theory predicts that the last eddy formed while the sensible heat flux changes sign during the evening transition should produce a delay. It appears that this last eddy is decelerated through the action of turbulent momentum and thermal diffusivities, and that the delay is related to the convective turnover timescale. Observations indicate that as horizontal shear becomes more important, the delay time apparently increases to values greater than the convective turnover timescale.

Posted on 3 September 2014 | 12:00 am


Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis

Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis

Atmospheric Chemistry and Physics, 14, 9061-9076, 2014

Author(s): C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis

A detailed three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe, focusing on the formation and chemical transformation of organic matter. Three periods representative of different seasons were simulated, corresponding to intensive field campaigns. An extensive set of AMS measurements was used to evaluate the model and, using factor-analysis results, gain more insight into the sources and transformations of organic aerosol (OA). Overall, the agreement between predictions and measurements for OA concentration is encouraging, with the model reproducing two-thirds of the data (daily average mass concentrations) within a factor of 2. Oxygenated OA (OOA) is predicted to contribute 93% to total OA during May, 87% during winter and 96% during autumn, with the rest consisting of fresh primary OA (POA). Predicted OOA concentrations compare well with the observed OOA values for all periods, with an average fractional error of 0.53 and a bias equal to ?0.07 (mean error = 0.9 ?g m?3, mean bias = ?0.2 ?g m−3). The model systematically underpredicts fresh POA at most sites during late spring and autumn (mean bias up to ?0.8 ?g m−3). Based on results from a source apportionment algorithm running in parallel with PMCAMx, most of the POA originates from biomass burning (fires and residential wood combustion), and therefore biomass burning OA is most likely underestimated in the emission inventory. The sensitivity of POA predictions to the corresponding emissions' volatility distribution is discussed. The model performs well at all sites when the Positive Matrix Factorization (PMF)-estimated low-volatility OOA is compared against the OA with saturation concentrations of the OA surrogate species C* ≤ 0.1 ?g m?3 and semivolatile OOA against the OA with C* > 0.1 ?g m?3.

Posted on 3 September 2014 | 12:00 am


One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong – Part 1: Inorganic ions and oxalate

One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong – Part 1: Inorganic ions and oxalate

Atmospheric Chemistry and Physics, 14, 9013-9027, 2014

Author(s): Q. Bian, X. H. H. Huang, and J. Z. Yu

Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here 1-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size-segregated samples in the size range of 0.056–18 ?m were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~ 0.7–0.9 ?m. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/([Na+] + 2[Ca2+]) × (1/Ke')) when Pn_fine is significant (> 10%). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons.

Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined data sets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high-sulfate days while local formation processes contributed approximately 30% of the total sulfate. This work provides field-measurement-based evidence important for understanding both local photochemistry and regional/super-regional transport in order to properly simulate sulfate aerosols in air quality models.

Posted on 2 September 2014 | 12:00 am


The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates

The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates

Atmospheric Chemistry and Physics, 14, 9051-9059, 2014

Author(s): D. V. Spracklen and C. L. Heald

Primary biological aerosol particles (PBAPs) may play an important role in aerosol–climate interactions, in particular by affecting ice formation in mixed phase clouds. However, the role of PBAPs is poorly understood because the sources and distribution of PBAPs in the atmosphere are not well quantified. Here we include emissions of fungal spores and bacteria in a global aerosol microphysics model and explore their contribution to concentrations of supermicron particle number, cloud condensation nuclei (CCN) and immersion freezing rates. Simulated surface annual mean concentrations of fungal spores are ~ 2.5 × 104 m?3 over continental midlatitudes and 1 × 105 m?3 over tropical forests. Simulated surface concentrations of bacteria are 2.5 × 104 m?3 over most continental regions and 5 × 104 m?3 over grasslands of central Asia and North America. These simulated surface number concentrations of fungal spores and bacteria are broadly in agreement with the limited available observations. We find that fungal spores and bacteria contribute 8 and 5% respectively to simulated continental surface mean supermicron number concentrations, but have very limited impact on CCN concentrations, altering regional concentrations by less than 1%. In agreement with previous global modelling studies, we find that fungal spores and bacteria contribute very little (3 × 10?3%, even when we assume upper limits for ice nucleation activity) to global average immersion freezing ice nucleation rates, which are dominated by soot and dust. However, at lower altitudes (400 to 600 hPa), where warmer temperatures mean that soot and dust may not nucleate ice, we find that PBAP controls the immersion freezing ice nucleation rate. This demonstrates that PBAPs can be of regional importance for IN formation, in agreement with case study observations.

Posted on 2 September 2014 | 12:00 am


Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions

Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions

Atmospheric Chemistry and Physics, 14, 9029-9050, 2014

Author(s): M. O. L. Cambaliza, P. B. Shepson, D. R. Caulton, B. Stirm, D. Samarov, K. R. Gurney, J. Turnbull, K. J. Davis, A. Possolo, A. Karion, C. Sweeney, B. Moser, A. Hendricks, T. Lauvaux, K. Mays, J. Whetstone, J. Huang, I. Razlivanov, N. L. Miles, and S. J. Richardson

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

Posted on 2 September 2014 | 12:00 am


On transition-zone water clouds

On transition-zone water clouds

Atmospheric Chemistry and Physics, 14, 9001-9012, 2014

Author(s): E. Hirsch, I. Koren, Z. Levin, O. Altaratz, and E. Agassi

A recent field campaign was conducted to measure the properties of thin, warm convective clouds forming under conditions of weak updrafts. During the campaign, short-lived clouds (on the order of minutes) with droplets' effective radius of 1–2 ?m and low liquid water path (~ 500 mg m–2) were measured. These low values are puzzling, since in most studies an effective radius of 4 ?m is reported to serve as the lower bound for clouds. A theoretical cloud model designed to resolve the droplet-activation process suggested conditions that favor the formation of such clouds. Here we show that these clouds, which mark the transition from haze to cloud, are highly sensitive to the magnitude of the initial perturbation that initiated them. We define these clouds as "transition-zone clouds". The existence of such clouds poses a key challenge for the analysis of atmospheric observations and models, since they "further smooth" the transition from dry aerosol through haze pockets to cumulus clouds.

Posted on 1 September 2014 | 12:00 am


Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products

Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products

Atmospheric Chemistry and Physics, 14, 8961-8981, 2014

Author(s): Q. T. Nguyen, M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, H. H. Madsen, J. H. Christensen, J. Brandt, A. Massling, J. K. Nøjgaard, and M. Glasius

Anthropogenic emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA) through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May to 22 June, 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale, with the compounds being long-range transported to the sites on the days with the highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in addition to modeled emissions of related precursors, including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) and SO2 emissions using the European Monitoring and Evaluation Program (EMEP) database. The local impacts were also studied by examining the correlation between selected species, which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases, including SO2, ozone (O3), NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, SO2, relative humidity (RH), temperature and global radiation seemed to affect the concentration level of those species, suggesting the influence of aqueous aerosol chemistry. The local impacts, however, seemed minor compared to the regional impacts. The total concentrations of organosulfates and nitrooxy organosulfates, on average, contributed to approximately 0.5–0.8% of PM1 mass at the two sampling sites.

Posted on 1 September 2014 | 12:00 am


How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?

How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?

Atmospheric Chemistry and Physics, 14, 8983-9000, 2014

Author(s): S. Fiedler, K. Schepanski, P. Knippertz, B. Heinold, and I. Tegen

This study presents the first quantitative estimate of the mineral dust emission associated with atmospheric depressions and mobile cyclones in North Africa. Atmospheric depressions are automatically tracked at 925 hPa based on ERA-Interim data from the European Centre for Medium-Range Weather Forecasts for 1989–2008. A set of filter criteria is applied to identify mobile cyclones, i.e. migrating and long-lived cyclones. The shorter term cyclone is used as a synonym for mobile cyclones. Dust emission is calculated with a dust emission model driven by 10 m winds and soil moisture from ERA-Interim. Emission peaks during winter and spring with spatial averages of 250–380 g m−2 per month. Comparison of the dust source activation frequency from the model against SEVIRI satellite observation shows a good agreement in the Bodélé Depression but differences in the north and west of North Africa. Depressions are abundant, particularly in summer when the Saharan heat low is situated over West Africa and during spring in the lee of the Atlas Mountains. Up to 90% (55% annually and spatially averaged) of dust emission occurs within 10 degrees of these depressions, with embedded mechanisms such as nocturnal low-level jets playing a role. Cyclones are rarer and occur primarily north of 20° N in spring in agreement with previous studies and over summertime West Africa consistent with near-surface signatures of African Easterly Waves. Dust emission within 10 degrees of cyclones peaks over Libya with up to 25% in spring. Despite the overall small contribution of 4% annually and spatially averaged, cyclones coincide with particularly intense dust emission events exceeding the climatological mean by a factor of four to eight. Soil moisture weakens dust emission during cyclone passage by about 10%.

Posted on 1 September 2014 | 12:00 am


Atmospheric occurrence, transport and deposition of polychlorinated biphenyls and hexachlorobenzene in the Mediterranean and Black seas

Atmospheric occurrence, transport and deposition of polychlorinated biphenyls and hexachlorobenzene in the Mediterranean and Black seas

Atmospheric Chemistry and Physics, 14, 8947-8959, 2014

Author(s): N. Berrojalbiz, J. Castro-Jiménez, G. Mariani, J. Wollgast, G. Hanke, and J. Dachs

The Mediterranean and Black seas are unique marine environments subject to important anthropogenic pressures due to direct and indirect loads of atmospheric inputs of organochlorine compounds (OCls) from primary and secondary sources. Here we report the results obtained during two east–west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where gas-phase and aerosol-phase samples were collected. Both matrices were analyzed for 41 polychlorinated biphenyls (PCBs), including dioxin-like congeners, and hexachlorobenzene (HCB). The values reported in this study for gas-phase HCB and ∑41PCB limit of detection (LOD) to 418.3 pg m?3 and from 81.99 to 931.6 pg m?3 respectively) are in the same range of those reported in former studies, possibly suggesting a limited decline in their atmospheric concentrations during the last decade for the Mediterranean region due to land-based OCl sources. There is a clear influence of the direction of the air mass on the atmospheric concentrations of PCBs, with higher concentrations when the air mass was from southern Europe, and the lowest concentrations for air masses coming from the SW Mediterranean and Atlantic Ocean. PCBs and HCB are close to air–water equilibrium for most sampling periods, thus resulting in low atmospheric deposition fluxes at open sea. This is consistent with the oligotrophic character of the Mediterranean Sea with a small influence of the biological pump capturing atmospheric PCBs. Therefore, degradation of gas-phase PCBs by OH radicals is estimated to be the main loss process of atmospheric PCBs during their transport over the Mediterranean Sea. Conversely, atmospheric residence times of HCB are predicted to be very long due to a lack of atmospheric degradation and low depositional fluxes due to concentrations at air–water equilibrium.

Posted on 1 September 2014 | 12:00 am


Kinetics of the reactions of isoprene-derived hydroxynitrates: gas phase epoxide formation and solution phase hydrolysis

Kinetics of the reactions of isoprene-derived hydroxynitrates: gas phase epoxide formation and solution phase hydrolysis

Atmospheric Chemistry and Physics, 14, 8933-8946, 2014

Author(s): M. I. Jacobs, W. J. Burke, and M. J. Elrod

Isoprene, the most abundant non-methane volatile organic compound (VOC) emitted into the atmosphere, is known to undergo gas phase oxidation to form eight different hydroxynitrate isomers in "high-NOx" environments. These hydroxynitrates are known to affect the global and regional formation of ozone and secondary organic aerosol (SOA), as well as affect the distribution of nitrogen. In the present study, we have synthesized three of the eight possible hydroxynitrates: 4-hydroxy-3-nitroxy isoprene (4,3-HNI) and E / Z-1-hydroxy-4-nitroxy isoprene (1,4-HNI). Oxidation of the 4,3-HNI isomer by the OH radical was monitored using a flow tube chemical ionization mass spectrometer (FT-CIMS), and its OH rate constant was determined to be (3.64 ± 0.41) × 10−11 cm3 molecule?1 s?1. The products of 4,3-HNI oxidation were monitored, and a mechanism to explain the products was developed. An isoprene epoxide (IEPOX) – a species important in SOA chemistry and thought to originate only from "low-NOx" isoprene oxidation – was found as a minor, but significant, product. Additionally, hydrolysis kinetics of the three synthesized isomers were monitored with nuclear magnetic resonance (NMR). The bulk, neutral solution hydrolysis rate constants for 4,3-HNI and the 1,4-HNI isomers were (1.59 ± 0.03) × 10−5 s?1 and (6.76 ± 0.09) × 10?3 s?1, respectively. The hydrolysis reactions of each isomer were found to be general acid-catalyzed. The reaction pathways, product yields and atmospheric implications for both the gas phase and aerosol phase reactions are discussed.

Posted on 1 September 2014 | 12:00 am


Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011

Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011

Atmospheric Chemistry and Physics, 14, 8883-8904, 2014

Author(s): K. W. Fomba, K. Müller, D. van Pinxteren, L. Poulain, M. van Pinxteren, and H. Herrmann

The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 ?g m?2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 ?g m?2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 ?g m?3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.

Posted on 1 September 2014 | 12:00 am


Air–sea exchange and gas–particle partitioning of polycyclic aromatic hydrocarbons in the Mediterranean

Air–sea exchange and gas–particle partitioning of polycyclic aromatic hydrocarbons in the Mediterranean

Atmospheric Chemistry and Physics, 14, 8905-8915, 2014

Author(s): M. D. Mulder, A. Heil, P. Kuku?ka, J. Klánová, J. Kuta, R. Prokeš, F. Sprovieri, and G. Lammel

Polycyclic aromatic hydrocarbon (PAH) concentration in air of the central and eastern Mediterranean in summer 2010 was 1.45 (0.30–3.25) ng m?3 (sum of 25 PAHs), with 8 (1–17)% in the particulate phase, almost exclusively associated with particles < 0.25 ?m. The total deposition flux of particulate PAHs was 0.3–0.5 ? g m?2 yr?1. The diffusive air–sea exchange fluxes of fluoranthene and pyrene were mostly found net-depositional or close to phase equilibrium, while retene was net-volatilisational in a large sea region. Regional fire activity records in combination with box model simulations suggest that seasonal depositional input of retene from biomass burning into the surface waters during summer is followed by an annual reversal of air–sea exchange, while interannual variability is dominated by the variability of the fire season. One-third of primary retene sources to the sea region in the period 2005–2010 returned to the atmosphere as secondary emissions from surface seawaters. It is concluded that future negative emission trends or interannual variability of regional sources may trigger the sea to become a secondary PAH source through reversal of diffusive air–sea exchange.

Capsule: In late summer the seawater surface in the Mediterranean has turned into a temporary secondary source of PAH, obviously related to biomass burning in the region.

Posted on 1 September 2014 | 12:00 am


Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL

Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL

Atmospheric Chemistry and Physics, 14, 8917-8931, 2014

Author(s): H. Bozem, H. Fischer, C. Gurk, C. L. Schiller, U. Parchatka, R. Koenigstedt, A. Stickler, M. Martinez, H. Harder, D. Kubistin, J. Williams, G. Eerdekens, and J. Lelieveld

Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular in the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During one measurement flight the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low-ozone air from the boundary layer to the outflow region. Entrainment of ozone-rich air is estimated to account for 62% (range: 33–91%) of the observed O3. Ozone is enhanced by only 5–6% by photochemical production in the outflow due to enhanced NO from lightning, based on model calculations using observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash?1 (range: 9.89 × 1026–9.82 × 1028 molecules O3 flash?1), which is at the upper limit of the range reported previously.

Posted on 1 September 2014 | 12:00 am


Measurements of dust deposition velocity in a wind-tunnel experiment

Measurements of dust deposition velocity in a wind-tunnel experiment

Atmospheric Chemistry and Physics, 14, 8869-8882, 2014

Author(s): J. Zhang, Y. Shao, and N. Huang

In this study, we present the results of a wind-tunnel experiment on dust deposition. A new method is proposed to derive dust deposition velocity from PDA (particle dynamics analysis) particle-velocity and particle-size measurements. This method has the advantage that the motions of individual dust particles are directly observed and all relevant data for computing dust deposition velocity is collected using a single instrument, and thus the measurement uncertainties are reduced. The method is used in the wind-tunnel experiment to measure dust deposition velocities for different particle sizes, wind speeds and surface conditions. For sticky-smooth wood and water surfaces, the observed dust deposition velocities are compared with the predictions using a dust deposition scheme, and the entire data set is compared with the data found in the literature. From the wind-tunnel experiments, a relatively reliable data set of dust deposition velocities is obtained, which is valuable for the development and validation of dust deposition schemes.

Posted on 1 September 2014 | 12:00 am


The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

Atmospheric Chemistry and Physics, 14, 8849-8868, 2014

Author(s): Y. Zhao, J. Zhang, and C. P. Nielsen

To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.

Posted on 1 September 2014 | 12:00 am


The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 3: Dynamics of low-level spin-up during the genesis

The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 3: Dynamics of low-level spin-up during the genesis

Atmospheric Chemistry and Physics, 14, 8795-8812, 2014

Author(s): L. L. Lussier III, M. T. Montgomery, and M. M. Bell

Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical, and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin-up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and López-Carrillo (2011), but differ in their suggested key results and related scientific implications that the pre-Nuri disturbance was spinning down in the planetary boundary layer on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective vorticity organization and low-level spin-up on the mesoscale.

Posted on 27 August 2014 | 12:00 am


Spatial extension of nucleating air masses in the Carpathian Basin

Spatial extension of nucleating air masses in the Carpathian Basin

Atmospheric Chemistry and Physics, 14, 8841-8848, 2014

Author(s): Z. Németh and I. Salma

Particle number size distributions were measured by differential mobility particle sizer in the diameter range of 6–1000 nm in the near-city background and city centre of Budapest continuously for two years. The city is situated in the middle part of the Carpathian Basin, which is a topographically discrete unit in the southeastern part of central Europe. Yearly mean nucleation frequencies and uncertainties for the near-city background and city centre were (28 + 6/?4) % and (27 + 9/?4) %, respectively. The total numbers of days with continuous and uninterrupted growth process were 43 and 31, respectively. These events and their properties were utilised to investigate the spatial scale of the nucleation in the basin, and whether there are any specific trajectories for the nucleating air masses. Local wind speed and direction data indicated that there seem to be differences between the nucleation and growth intervals and non-nucleation days. For further analysis, backward trajectories were generated by a simple air parcel trajectory model. Start and end time parameters of the nucleation and an end time parameter of the particle growth were derived by a standardised procedure based on examining the channel contents of the contour plots. These parameters were used to specify a segment on each backward trajectory that is associated with the nucleating air mass. The results indicated that regional nucleation happened in the continental boundary layer mostly in the Carpathian Basin but that the most distant trajectories originated outside of the basin. The nucleating air masses were predominantly associated with NW and SE geographical sectors, and some of them were also related to larger forested territories. The results also emphasised indirectly that the regional new particle formation and growth phenomena observable at the fixed location often expand to the bulk of the Carpathian Basin.

Posted on 27 August 2014 | 12:00 am


Sources and geographical origins of fine aerosols in Paris (France)

Sources and geographical origins of fine aerosols in Paris (France)

Atmospheric Chemistry and Physics, 14, 8813-8839, 2014

Author(s): M. Bressi, J. Sciare, V. Ghersi, N. Mihalopoulos, J.-E. Petit, J. B. Nicolas, S. Moukhtar, A. Rosso, A. Féron, N. Bonnaire, E. Poulakis, and C. Theodosi

The present study aims at identifying and apportioning fine aerosols to their major sources in Paris (France) – the second most populated "larger urban zone" in Europe – and determining their geographical origins. It is based on the daily chemical composition of PM2.5 examined over 1 year at an urban background site of Paris (Bressi et al., 2013). Positive matrix factorization (EPA PMF3.0) was used to identify and apportion fine aerosols to their sources; bootstrapping was performed to determine the adequate number of PMF factors, and statistics (root mean square error, coefficient of determination, etc.) were examined to better model PM2.5 mass and chemical components. Potential source contribution function (PSCF) and conditional probability function (CPF) allowed the geographical origins of the sources to be assessed; special attention was paid to implement suitable weighting functions. Seven factors, namely ammonium sulfate (A.S.)-rich factor, ammonium nitrate (A.N.)-rich factor, heavy oil combustion, road traffic, biomass burning, marine aerosols and metal industry, were identified; a detailed discussion of their chemical characteristics is reported. They contribute 27, 24, 17, 14, 12, 6 and 1% of PM2.5 mass (14.7 ?g m?3) respectively on the annual average; their seasonal variability is discussed. The A.S.- and A.N.-rich factors have undergone mid- or long-range transport from continental Europe; heavy oil combustion mainly stems from northern France and the English Channel, whereas road traffic and biomass burning are primarily locally emitted. Therefore, on average more than half of PM2.5 mass measured in the city of Paris is due to mid- or long-range transport of secondary aerosols stemming from continental Europe, whereas local sources only contribute a quarter of the annual averaged mass. These results imply that fine-aerosol abatement policies conducted at the local scale may not be sufficient to notably reduce PM2.5 levels at urban background sites in Paris, suggesting instead more coordinated strategies amongst neighbouring countries. Similar conclusions might be drawn in other continental urban background sites given the transboundary nature of PM2.5 pollution.

Posted on 27 August 2014 | 12:00 am


EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy

EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy

Atmospheric Chemistry and Physics, 14, 8781-8793, 2014

Author(s): L. Mona, N. Papagiannopoulos, S. Basart, J. Baldasano, I. Binietoglou, C. Cornacchia, and G. Pappalardo

In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000–July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model–observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.

Posted on 26 August 2014 | 12:00 am


Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations

Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations

Atmospheric Chemistry and Physics, 14, 8749-8761, 2014

Author(s): M. M. Wonsick, R. T. Pinker, and Y. Ma

The "elevated heat pump" (EHP) hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming in the Himalayan foothills and above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. This finding is primarily based on results from a NASA finite-volume general circulation model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in northern India and dust from Western China, Afghanistan, Pakistan, the Thar Desert, and the Arabian Peninsula drive the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol–monsoon relationship has been investigated using various modeling and observational techniques. The current study takes a novel observational approach to detect signatures of the "elevated heat pump" effect on convection, precipitation, and temperature for contrasting aerosol content years during the period of 2000–2012. The analysis benefits from unique high-resolution convection information inferred from Meteosat-5 observations as available through 2005. Additional data sources include temperature data from the NCEP/NCAR Reanalysis and the European Reanalysis (ERA-Interim) precipitation data from the Global Precipitation Climatology Project (GPCP), aerosol optical depth from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol optical properties from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) aerosol reanalysis. Anomalous upper-tropospheric warming and the early onset and intensification of the Indian monsoon were not consistently observed during the years with high loads of absorbing aerosols. Possibly, model assumptions and/or unaccounted semi-direct aerosol effects caused the disagreement between observed and hypothesized behavior.

Posted on 26 August 2014 | 12:00 am


On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula

On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula

Atmospheric Chemistry and Physics, 14, 8763-8779, 2014

Author(s): J. H. Kim, S. S. Yum, S. Shim, W. J. Kim, M. Park, J.-H. Kim, M.-H. Kim, and S.-C. Yoon

Total number concentrations of particles having a diameter larger than 10 nm (NCN), cloud condensation nuclei at several supersaturation (S) values (NCCN) and number size distributions of particles with 10–414 nm diameter were measured in Seoul between 2004 and 2010. Overall average values of NCN and geometric mean diameter were 17 811 ± 5581 cm?3 and 48 ± 6 nm. Average NCCN at 0.4, 0.6 and 0.8% S were 4145 ± 2016, 5323 ± 2453 and 6067 ± 2780 cm?3 and corresponding NCCN / NCN were 0.26 ± 0.11, 0.33 ± 0.11 and 0.37 ± 0.12. There is a clear seasonal variation in aerosol concentration, which seems to be due to the monsoon. NCN and NCCN are also found to depend on the volume of traffic and the height of the planetary boundary layer, respectively.

During aircraft campaigns in 2009 and 2011, NCN and NCCN at 0.6% S (N0.6%) were measured in and around the Korean Peninsula. During the 2011 campaign, the aerosol scattering coefficient was also measured. NCN and N0.6% in the lower altitudes were generally higher than at higher altitudes, except for cases when particle formation and growth events were thought to occur at higher altitudes. NCN and N0.6% generally show a positive correlation with aerosol scattering coefficients but this correspondence tends to vary with altitude. Occasional instances of low (< 0.3) N0.6% / NCN in the boundary layer are demonstrated to be associated with particle formation and growth events. With the support of ground measurements, it is confirmed that a particle formation and growth event did indeed occur over the Yellow Sea on a flight day, and the areal extent of this event is estimated to be greater than 100 km × 450 km.

With the combination of the current and several relevant previous studies, a composite map of NCN and NCCN in and around the Korean Peninsula is produced. Overall, the exhibited concentrations are typical of values measured over polluted regions elsewhere on the globe. Moreover, there is a generally decreasing trend from west to east over the region, implying that the region is constantly under the dominant influence of continental outflow.

Posted on 26 August 2014 | 12:00 am


Observation and modelling of HOx radicals in a boreal forest

Observation and modelling of HOx radicals in a boreal forest

Atmospheric Chemistry and Physics, 14, 8723-8747, 2014

Author(s): K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder

Measurements of OH and HO2 radicals were conducted in a pine-dominated forest in southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF), indicating small systematic disagreement, OHLIF / OHCIMS = (1.31 ± 0.14). Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem–atmosphere interface. Comprehensive measurements including observations of many volatile organic compounds (VOCs) and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model.

Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady-state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one-third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod. / OHobs. = 1.00 ± 0.16), while HO2 mixing ratios are significantly under-predicted (HO2mod. / HO2obs. = 0.3 ± 0.2), and simulated OH reactivity does not match the observed OH reactivity. The simultaneous under-prediction of HO2 and OH reactivity in periods in which OH concentrations were simulated realistically suggests that the missing OH reactivity is an unaccounted-for source of HO2.

Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity there are additional recycling processes forming OH directly, not via reaction of HO2 with NO or O3, or unaccounted-for primary HOx sources. Under conditions of moderate observed OH reactivity and high actinic flux, an additional RO2 source of approximately 1 × 106 molec cm−3 s−1 would be required to close the radical budget. Nevertheless, a major fraction of the OH recycling occurs via the reaction of HO2 with NO and O3 in this terpene-dominated environment.

Posted on 26 August 2014 | 12:00 am


Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data

Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data

Atmospheric Chemistry and Physics, 14, 8701-8721, 2014

Author(s): M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka

The representation of the effect of tropical deep convective (DC) systems on upper-tropospheric moist processes and outgoing longwave radiation is evaluated in the EC-Earth3, ECHAM6, and CAM5 (Community Atmosphere Model) climate models using satellite-retrieved data. A composite technique is applied to thousands of deep convective systems that are identified using local rain rate maxima in order to focus on the temporal evolution of the deep convective processes in the model and satellite-retrieved data.

The models tend to over-predict the occurrence of rain rates that are less than ? 3 mm h?1 compared to Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA). While the diurnal distribution of oceanic rain rate maxima in the models is similar to the satellite-retrieved data, the land-based maxima are out of phase.

Despite having a larger climatological mean upper-tropospheric relative humidity, models closely capture the satellite-derived moistening of the upper troposphere following the peak rain rate in the deep convective systems. Simulated cloud fractions near the tropopause are larger than in the satellite data, but the ice water contents are smaller compared with the satellite-retrieved ice data. The models capture the evolution of ocean-based deep convective systems fairly well, but the land-based systems show significant discrepancies. Over land, the diurnal cycle of rain is too intense, with deep convective systems occurring at the same position on subsequent days, while the satellite-retrieved data vary more in timing and geographical location.

Finally, simulated outgoing longwave radiation anomalies associated with deep convection are in reasonable agreement with the satellite data, as well as with each other. Given the fact that there are strong disagreements with, for example, cloud ice water content, and cloud fraction, between the models, this study supports the hypothesis that such agreement with satellite-retrieved data is achieved in the three models due to different representations of deep convection processes and compensating errors.

Posted on 26 August 2014 | 12:00 am


New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from 1 year of size-distribution observations

New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from 1 year of size-distribution observations

Atmospheric Chemistry and Physics, 14, 8647-8663, 2014

Author(s): J. R. Pierce, D. M. Westervelt, S. A. Atwood, E. A. Barnes, and W. R. Leaitch

Aerosol particle nucleation, or new-particle formation, is the dominant contributor to particle number in the atmosphere. However, these particles must grow through condensation of low-volatility vapors without coagulating with the larger, preexisting particles in order to reach climate-relevant sizes (diameters larger than 50–100 nm), where the particles may affect clouds and radiation. In this paper, we use 1 year of size-distribution measurements from Egbert, Ontario, Canada to calculate the frequency of regional-scale new-particle-formation events, new-particle-formation rates, growth rates and the fraction of new particles that survive to reach climate-relevant sizes. Regional-scale new-particle-formation events occur on 14–31% of the days (depending on the stringency of the classification criteria), with event frequency peaking in the spring and fall. New-particle-formation rates and growth rates are similar to those measured at other midlatitude continental sites. We calculate that roughly half of the climate-relevant particles (with diameters larger than 50–100 nm) at Egbert are formed through new-particle-formation events. With the addition of meteorological and SO2 measurements, we find that new-particle formation at Egbert often occurs under synoptic conditions associated with high surface pressure and large-scale subsidence that cause sunny conditions and clean-air flow from the north and west. However, new-particle formation also occurs when air flows from the polluted regions to the south and southwest of Egbert. The new-particle-formation rates tend to be faster during events under the polluted south/southwest flow conditions.

Posted on 26 August 2014 | 12:00 am


Online measurements of water-soluble organic acids in the gas and aerosol phase from the photooxidation of 1,3,5-trimethylbenzene

Online measurements of water-soluble organic acids in the gas and aerosol phase from the photooxidation of 1,3,5-trimethylbenzene

Atmospheric Chemistry and Physics, 14, 8665-8677, 2014

Author(s): A. P. Praplan, K. Hegyi-Gaeggeler, P. Barmet, L. Pfaffenberger, J. Dommen, and U. Baltensperger

The formation of organic acids during photooxidation of 1,3,5-trimethylbenzene (TMB) in the presence of NOx was investigated with an online ion chromatography (IC) instrument coupled to a mass spectrometer (MS) at the Paul Scherrer Institute's smog chamber. Gas and aerosol phase were both sampled. Molecular formulas were attributed to 12 compounds with the help of high-resolution MS data from filter extracts (two compounds in the gas phase only, two in the aerosol phase only and eight in both). Seven of those species could be identified: formic acid, acetic acid, glycolic acid, butanoic acid, pyruvic acid, lactic acid and methylmaleic acid. While the organic acid fraction present in the aerosol phase does not strongly depend on the precursor concentration (6 to 20%), the presence of SO2 reduces this amount to less than 3% for both high and low precursor concentration scenarios. A large amount of acetic acid was injected during one experiment after aerosol formation, but no increase of acetic acid particle concentration could be observed. This indicates that the unexpected presence of volatile organic acids in the particle phase might not be due to partitioning effects, but to reactive uptake or to sampling artefact.

Posted on 26 August 2014 | 12:00 am


PM2.5 pollution in a megacity of southwest China: source apportionment and implication

PM2.5 pollution in a megacity of southwest China: source apportionment and implication

Atmospheric Chemistry and Physics, 14, 8679-8699, 2014

Author(s): J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che, Z. Zhang, Z. Lin, J. Jing, J. Cao, and S.-C. Hsu

Daily PM2.5 (aerosol particles with an aerodynamic diameter of less than 2.5 ?m) samples were collected at an urban site in Chengdu, an inland megacity in southwest China, during four 1-month periods in 2011, with each period in a different season. Samples were subject to chemical analysis for various chemical components ranging from major water-soluble ions, organic carbon (OC), element carbon (EC), trace elements to biomass burning tracers, anhydrosugar levoglucosan (LG), and mannosan (MN). Two models, the ISORROPIA II thermodynamic equilibrium model and the positive matrix factorization (PMF) model, were applied to explore the likely chemical forms of ionic constituents and to apportion sources for PM2.5. Distinctive seasonal patterns of PM2.5 and associated main chemical components were identified and could be explained by varying emission sources and meteorological conditions. PM2.5 showed a typical seasonality of waxing in winter and waning in summer, with an annual mean of 119 ?g m?3. Mineral soil concentrations increased in spring, whereas biomass burning species elevated in autumn and winter.

Six major source factors were identified to have contributed to PM2.5 using the PMF model. These were secondary inorganic aerosols, coal combustion, biomass burning, iron and steel manufacturing, Mo-related industries, and soil dust, and they contributed 37 ± 18, 20 ± 12, 11 ± 10, 11 ± 9, 11 ± 9, and 10 ± 12%, respectively, to PM2.5 masses on annual average, while exhibiting large seasonal variability. On annual average, the unknown emission sources that were not identified by the PMF model contributed 1 ± 11% to the measured PM2.5 mass. Various chemical tracers were used for validating PMF performance. Antimony (Sb) was suggested to be a suitable tracer of coal combustion in Chengdu. Results of LG and MN helped constrain the biomass burning sources, with wood burning dominating in winter and agricultural waste burning dominating in autumn. Excessive Fe (Ex-Fe), defined as the excessive portion in measured Fe that cannot be sustained by mineral dust, is corroborated to be a straightforward useful tracer of iron and steel manufacturing pollution. In Chengdu, Mo / Ni mass ratios were persistently higher than unity, and considerably distinct from those usually observed in ambient airs. V / Ni ratios averaged only 0.7. Results revealed that heavy oil fuel combustion should not be a vital anthropogenic source, and additional anthropogenic sources for Mo are yet to be identified. Overall, the emission sources identified in Chengdu could be dominated by local sources located in the vicinity of Sichuan, a result different from those found in Beijing and Shanghai, wherein cross-boundary transport is significant in contributing pronounced PM2.5. These results provided implications for PM2.5 control strategies.

Posted on 26 August 2014 | 12:00 am


Technical Note: On the use of nudging for aerosol–climate model intercomparison studies

Technical Note: On the use of nudging for aerosol–climate model intercomparison studies

Atmospheric Chemistry and Physics, 14, 8631-8645, 2014

Author(s): K. Zhang, H. Wan, X. Liu, S. J. Ghan, G. J. Kooperman, P.-L. Ma, P. J. Rasch, D. Neubauer, and U. Lohmann

Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing.

In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol–climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects since it provides well-constrained meteorology without strongly perturbing the model's mean climate.

Posted on 26 August 2014 | 12:00 am


Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

Atmospheric Chemistry and Physics, 14, 8611-8630, 2014

Author(s): D. I. Haga, S. M. Burrows, R. Iannone, M. J. Wheeler, R. H. Mason, J. Chen, E. A. Polishchuk, U. Pöschl, and A. K. Bertram

We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between ?19 °C and ?29 °C, 0.01 between ?25.5 °C and ?31 °C, and 0.1 between ?26 °C and ?31.5 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ? Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from ?20 °C to ?25 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry–climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in the atmosphere. Simulations suggest that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions, and decrease annual mean concentrations in the upper troposphere.

Posted on 26 August 2014 | 12:00 am


Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant

Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant

Atmospheric Chemistry and Physics, 14, 8533-8557, 2014

Author(s): M. Karl, N. Castell, D. Simpson, S. Solberg, J. Starrfelt, T. Svendby, S.-E. Walker, and R. F. Wright

In this study, a new model framework that couples the atmospheric chemistry transport model system Weather Research and Forecasting–European Monitoring and Evaluation Programme (WRF-EMEP) and the multimedia fugacity level III model was used to assess the environmental impact of in-air amine emissions from post-combustion carbon dioxide capture. The modelling framework was applied to a typical carbon capture plant artificially placed at Mongstad, on the west coast of Norway. The study region is characterized by high precipitation amounts, relatively few sunshine hours, predominantly westerly winds from the North Atlantic and complex topography. Mongstad can be considered as moderately polluted due to refinery activities. WRF-EMEP enables a detailed treatment of amine chemistry in addition to atmospheric transport and deposition. Deposition fluxes of WRF-EMEP simulations were used as input to the fugacity model in order to derive concentrations of nitramines and nitrosamine in lake water. Predicted concentrations of nitramines and nitrosamines in ground-level air and drinking water were found to be highly sensitive to the description of amine chemistry, especially of the night-time chemistry with the nitrate (NO3) radical. Sensitivity analysis of the fugacity model indicates that catchment characteristics and chemical degradation rates in soil and water are among the important factors controlling the fate of these compounds in lake water. The study shows that realistic emission of commonly used amines result in levels of the sum of nitrosamines and nitramines in ground-level air (0.6–10 pg m−3) and drinking water (0.04–0.25 ng L−1) below the current safety guideline for human health that is enforced by the Norwegian Environment Agency. The modelling framework developed in this study can be used to evaluate possible environmental impacts of emissions of amines from post-combustion capture in other regions of the world.

Posted on 25 August 2014 | 12:00 am


A climatology of dust emission events from northern Africa using long-term surface observations

A climatology of dust emission events from northern Africa using long-term surface observations

Atmospheric Chemistry and Physics, 14, 8579-8597, 2014

Author(s): S. M. Cowie, P. Knippertz, and J. H. Marsham

Long-term (1984–2012) surface observations from 70 stations in the Sahara and Sahel are used to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. The frequency of dust emission (FDE) is calculated using the present weather codes of SYNOP reports. Thresholds are estimated as the wind speed for which there is a 50% probability of dust emission and are then used to calculate strong wind frequency (SWF) and dust uplift potential (DUP), where the latter is an estimate of the dust-generating power of winds. Stations are grouped into six coherent geographical areas for more in-depth analysis.

FDE is highest at stations in Sudan and overall peaks in spring north of 23° N. South of this, where stations are directly influenced by the summer monsoon, the annual cycle in FDE is more variable. Thresholds are highest in northern Algeria, lowest in the latitude band 16–21° N and have greatest seasonal variations in the Sahel. Spatial variability in thresholds partly explain spatial variability in frequency of dust emission events on an annual basis. However, seasonal variations in thresholds for the six grouped areas are not the main control on seasonal variations in FDE. This is demonstrated by highly correlated seasonal cycles of FDE and SWF which are not significantly changed by using a fixed, or seasonally varying, threshold. The likely meteorological mechanisms generating these patterns such as low-level jets and haboobs are discussed.

Posted on 25 August 2014 | 12:00 am


On the role of clouds in the fair weather part of the global electric circuit

On the role of clouds in the fair weather part of the global electric circuit

Atmospheric Chemistry and Physics, 14, 8599-8610, 2014

Author(s): A. J. G. Baumgaertner, G. M. Lucas, J. P. Thayer, and S. A. Mallios

Clouds in the fair weather return path of the global electric circuit (GEC) reduce conductivity because of the limited mobility of charge due to attachment to cloud water droplets, effectively leading to a loss of ions. A high-resolution GEC model, which numerically solves the current continuity equation in combination with Ohm's law, is used to show that return currents partially flow around clouds, with current divergence above the cloud and convergence below the cloud. An analysis of this effect is presented for various types of clouds, i.e., for different altitude extents and for different horizontal dimensions, finding that the effect is most pronounced for high clouds with a diameter below 100 km. Based on these results, a method to calculate column and global resistance is developed that can account for all cloud sizes and altitudes. The CESM1(WACCM) (Community Earth System Model – Whole Atmosphere Community Climate Model) as well as ISCCP (International Satellite Cloud Climatology Project) cloud data are used to calculate the effect of this phenomenon on global resistance. From CESM1(WACCM), it is found that when including clouds in the estimate of resistance the global resistance increases by up to 73%, depending on the parameters used. Using ISCCP cloud cover leads to an even larger increase, which is likely to be overestimated because of time averaging of cloud cover. Neglecting current divergence/convergence around small clouds overestimates global resistance by up to 20% whereas the method introduced by previous studies underestimates global resistance by up to 40%. For global GEC models, a~conductivity parameterization is developed to account for the current divergence/convergence phenomenon around clouds. Conductivity simulations from CESM1(WACCM) using this parameterization are presented.

Posted on 25 August 2014 | 12:00 am


Characterisation of bioaerosol emissions from a Colorado pine forest: results from the BEACHON-RoMBAS experiment

Characterisation of bioaerosol emissions from a Colorado pine forest: results from the BEACHON-RoMBAS experiment

Atmospheric Chemistry and Physics, 14, 8559-8578, 2014

Author(s): I. Crawford, N. H. Robinson, M. J. Flynn, V. E. Foot, M. W. Gallagher, J. A. Huffman, W. R. Stanley, and P. H. Kaye

The behaviour of primary biological aerosols (PBAs) at an elevated, un-polluted North American forest site was studied using an ultra violet-light induced fluorescence (UV-LIF) measurement technique in conjunction with hierarchical agglomerative cluster analysis (HA-CA). Contemporaneous UV-LIF measurements were made with two wide-band integrated bioaerosol spectrometers, WIBS-3 and WIBS-4, which sampled close to the forest floor and via a continuous vertical profiling system, respectively. Additionally, meteorological parameters were recorded at various heights throughout the forest and used to estimate PBAP (Primary Biological Aerosol Particle) fluxes. HA-CA using data from the two, physically separated WIBS instruments independently yielded very similar cluster solutions.

All fluorescent clusters displayed a diurnal minimum at midday at the forest floor with maximum concentration occurring at night. Additionally, the number concentration of each fluorescent cluster was enhanced, to different degrees, during wet periods. A cluster that displayed the greatest enhancement and highest concentration during sustained wet periods appears consistent with behaviour reported for fungal spores. A cluster that appears to be behaviourally consistent with bacteria dominated during dry periods. Fluorescent particle concentrations were found to be greater within the forest canopy than at the forest floor, indicating that the canopy was the main source of these particles rather than the minimal surface vegetation, which appeared to contribute little to overall PBA concentrations at this site.

Fluorescent particle concentration was positively correlated with relative humidity (RH), and parameterisations of the aerosol response during dry and wet periods are reported. The aforementioned fungal spore-like cluster displayed a strong positive response to increasing RH. The bacteria-like cluster responded more strongly to direct rain-fall events than other PBA types. Peak concentrations of this cluster are shown to be linearly correlated to the log of peak rainfall rates.

Parallel studies by Huffman et al. (2013) and Prenni et al. (2013) showed that the fluorescent particle concentrations correlated linearly with ice nuclei (IN) concentrations at this site during rain events. We discuss this result in conjunction with our cluster analysis to appraise the candidate IN.

Posted on 25 August 2014 | 12:00 am


Impact of external industrial sources on the regional and local SO2 and O3 levels of the Mexico megacity

Impact of external industrial sources on the regional and local SO2 and O3 levels of the Mexico megacity

Atmospheric Chemistry and Physics, 14, 8483-8499, 2014

Author(s): V. H. Almanza, L. T. Molina, G. Li, J. Fast, and G. Sosa

The air quality of megacities can be influenced by external emission sources on both global and regional scales. At the same time their outflow emissions can exert an impact to the surrounding environment. The present study evaluates an SO2 peak observed on 24 March 2006 at the suburban supersite T1 and at ambient air quality monitoring stations located in the northern region of the Mexico City Metropolitan Area (MCMA) during the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. We found that this peak could be related to an important episodic emission event coming from Tizayuca region, northeast of the MCMA. Back-trajectory analyses suggest that the emission event started in the early morning at 04:00 LST and lasted for about 9 h. The estimated emission rate is about 2 kg s?1. To the best of our knowledge, sulfur dioxide emissions from the Tizayuca region have not been considered in previous studies. This finding suggests the possibility of "overlooked" emission sources in this region that could influence the air quality of the MCMA. This further motivated us to study the cement plants, including those in the state of Hidalgo and in the State of Mexico. It was found that they can contribute to the SO2 levels in the northeast (NE) region of the basin (about 42%), at the suburban supersite T1 (41%) and that at some monitoring stations their contribution can be even higher than the contribution from the Tula Industrial Complex (TIC).

The contribution of the Tula Industrial Complex to regional ozone levels is estimated. The model suggests low contribution to the MCMA (1 to 4 ppb) and slightly higher contribution at the suburban T1 (6 ppb) and rural T2 (5 ppb) supersites. However, the contribution could be as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of the state of Hidalgo. In addition, the results indicated that the ozone plume could also be transported to northwest Tlaxcala, eastern Hidalgo, and farther northeast of the State of Mexico, but with rather low values. A first estimate of the potential contribution from flaring activities to regional ozone levels is presented. Results suggest that up to 30% of the total regional ozone from TIC could be related to flaring activities.

Finally, the influence on SO2 levels from technological changes in the existing refinery is briefly discussed. These changes are due to the upcoming construction of a new refinery in Tula. The combination of emission reductions in the power plant, the refinery and in local sources in the MCMA could result in higher reductions on the average SO2 concentration. Reductions in external sources tend to affect more the northern part of the basin (?16 to ?46%), while reductions of urban sources in the megacity tend to diminish SO2 levels substantially in the central, southwest, and southeast regions (?31 to ?50%).

Posted on 22 August 2014 | 12:00 am


Representing time-dependent freezing behaviour in immersion mode ice nucleation

Representing time-dependent freezing behaviour in immersion mode ice nucleation

Atmospheric Chemistry and Physics, 14, 8501-8520, 2014

Author(s): R. J. Herbert, B. J. Murray, T. F. Whale, S. J. Dobbie, and J. D. Atkinson

In order to understand the impact of ice formation in clouds, a quantitative understanding of ice nucleation is required, along with an accurate and efficient representation for use in cloud resolving models. Ice nucleation by atmospherically relevant particle types is complicated by interparticle variability in nucleating ability, as well as a stochastic, time-dependent, nature inherent to nucleation. Here we present a new and computationally efficient Framework for Reconciling Observable Stochastic Time-dependence (FROST) in immersion mode ice nucleation. This framework is underpinned by the finding that the temperature dependence of the nucleation-rate coefficient controls the residence-time and cooling-rate dependence of freezing. It is shown that this framework can be used to reconcile experimental data obtained on different timescales with different experimental systems, and it also provides a simple way of representing the complexities of ice nucleation in cloud resolving models. The routine testing and reporting of time-dependent behaviour in future experimental studies is recommended, along with the practice of presenting normalised data sets following the methods outlined here.

Posted on 22 August 2014 | 12:00 am


Spatial regression analysis on 32 years of total column ozone data

Spatial regression analysis on 32 years of total column ozone data

Atmospheric Chemistry and Physics, 14, 8461-8482, 2014

Author(s): J. S. Knibbe, R. J. van der A, and A. T. J. de Laat

Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979–2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009–2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis.

A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model.

The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices.

Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.

Posted on 22 August 2014 | 12:00 am


Organic matter matters for ice nuclei of agricultural soil origin

Organic matter matters for ice nuclei of agricultural soil origin

Atmospheric Chemistry and Physics, 14, 8521-8531, 2014

Author(s): Y. Tobo, P. J. DeMott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis

Heterogeneous ice nucleation is a crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation by airborne desert soil dusts composed predominantly of minerals is widely acknowledged. However, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to 20–25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust-source region in North America. Here we show evidence for the significant role of soil organic matter (SOM) in particles acting as ice nuclei (IN) under mixed-phase cloud conditions. We find that the ice-nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is clearly reduced after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we demonstrate that organic-rich particles are more important than mineral particles for the ice-nucleating ability of the agricultural soil dusts at temperatures warmer than about ?36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles) may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

Posted on 22 August 2014 | 12:00 am


Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise

Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise

Atmospheric Chemistry and Physics, 14, 8419-8434, 2014

Author(s): A. S. Wozniak, A. S. Willoughby, S. C. Gurganus, and P. G. Hatcher

The molecular characteristics of aerosol organic matter (OM) determines to a large extent its impacts on the atmospheric radiative budget and ecosystem function in terrestrial and aquatic environments, yet the OM molecular details of aerosols from different sources are not well established. Aerosol particulate samples with North American-influenced, North African-influenced, and marine (minimal recent continental influence) air mass back trajectories were collected as part of the 2011 trans-North Atlantic US GEOTRACES cruise and analyzed for their water soluble OM (WSOM) molecular characteristics using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Principal component analysis (PCA) separated the samples into five groups defined by distinct molecular formula characteristics. An abundance of nitrogen containing compounds with molecular formulas consistent with amino acid derivatives defined the two samples comprising the primary marine group (henceforth referred to as Primary Marine), which suggest a primary marine biological source to their WSOM in spite of their North American-influenced air mass trajectories. A second group of samples (aged marine, henceforth referred to as Aged Marine) with marine air mass trajectories was characterized by an abundance of low O / C (0.15–0.45) sulfur containing compounds consistent with organosulfate compounds formed via secondary aging reactions in the atmosphere. Several samples having North American-influenced air mass trajectories formed another group again characterized by organosulfate and nitrooxyorganosulfate type compounds with higher O / C ratios (0.5–1.0) than the Aged Marine samples reflecting the combustion influence from the North American continent. All the samples with North African-influenced air mass trajectories were grouped together in the PCA and were characterized by a lack of heteroatom (N, S, P) containing molecular formulas covering a wide O / C range (0.15–0.90) reflecting the desert source of this WSOM. The two marine groups showed molecular formulas that, on average, had higher H / C ratios and lower O / C ratios and modified aromaticity indices than the two continentally influenced groups, which suggests that these properties are characteristic of marine vs. continental aerosol WSOM. The final sample group, the mixed source samples (henceforth referred to as Mixed Source), showed intermediate molecular characteristics, which suggests no dominant continental or marine source. The source-specific OM details described here will aid efforts to link aerosol OM source with molecular characteristics and impacts in the environment.

Posted on 21 August 2014 | 12:00 am


The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

Atmospheric Chemistry and Physics, 14, 8435-8447, 2014

Author(s): M. Vieno, M. R. Heal, S. Hallsworth, D. Famulari, R. M. Doherty, A. J. Dore, Y. S. Tang, C. F. Braban, D. Leaver, M. A. Sutton, and S. Reis

Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001–2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.

Posted on 21 August 2014 | 12:00 am


Comparisons of continuous atmospheric CH4, CO2 and N2O measurements – results from a travelling instrument campaign at Mace Head

Comparisons of continuous atmospheric CH4, CO2 and N2O measurements – results from a travelling instrument campaign at Mace Head

Atmospheric Chemistry and Physics, 14, 8403-8418, 2014

Author(s): S. N. Vardag, S. Hammer, S. O'Doherty, T. G. Spain, B. Wastine, A. Jordan, and I. Levin

A 2-month measurement campaign with a Fourier transform infrared analyser as a travelling comparison instrument (TCI) was performed at the Advanced Global Atmospheric Gases Experiment (AGAGE) and World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) station at Mace Head, Ireland. The aim was to evaluate the compatibility of atmospheric methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) measurements of the routine station instrumentation, consisting of a gas chromatograph (GC) for CH4 and N2O as well as a cavity ring-down spectroscopy (CRDS) system for CH4 and CO2. The advantage of a TCI approach for quality control is that the comparison covers the entire ambient air measurement system, including the sample intake system and the data evaluation process. For initial quality and performance control, the TCI was run in parallel with the Heidelberg GC before and after the measurement campaign at Mace Head. Median differences between the Heidelberg GC and the TCI were well within the WMO inter-laboratory compatibility target for all three greenhouse gases. At Mace Head, the median difference between the station GC and the TCI were ?0.04 nmol mol?1 for CH4 and ?0.37 nmol mol?1 for N2O (GC-TCI). For N2O, a similar difference (?0.40 nmol mol−1) was found when measuring surveillance or working gas cylinders with both instruments. This suggests that the difference observed in ambient air originates from a calibration offset that could partly be due to a difference between the WMO N2O X2006a reference scale used for the TCI and the Scripps Institution of Oceanography (SIO-1998) scale used at Mace Head and in the whole AGAGE network. Median differences between the CRDS G1301 and the TCI at Mace Head were 0.12 nmol mol?1 for CH4 and 0.14 ?mol mol?1 for CO2 (CRDS G1301 – TCI). The difference between both instruments for CO2 could not be explained, as direct measurements of calibration gases show no such difference. The CH4 differences between the TCI, the GC and the CRDS G1301 at Mace Head are much smaller than the WMO inter-laboratory compatibility target, while this is not the case for CO2 and N2O.

Posted on 21 August 2014 | 12:00 am


A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

Atmospheric Chemistry and Physics, 14, 8449-8460, 2014

Author(s): J. E. Franklin, J. R. Drummond, D. Griffin, J. R. Pierce, D. L. Waugh, P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, J. W. Taylor, J. D. Allan, H. Coe, K. A. Walker, L. Chisholm, T. J. Duck, J. T. Hopper, Y. Blanchard, M. D. Gibson, K. R. Curry, K. M. Sakamoto, G. Lesins, L. Dan, J. Kliever, and A. Saha

We present measurements of a long-range smoke transport event recorded on 20–21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario.

We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

Posted on 21 August 2014 | 12:00 am


The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements

The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements

Atmospheric Chemistry and Physics, 14, 8389-8401, 2014

Author(s): J. C. Chiu, J. A. Holmes, R. J. Hogan, and E. J. O'Connor

We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signals that are previously unwanted and need to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds and a positive correlation in non-drizzling clouds, where, for large optical depths, it asymptotes to 10 ?m. This asymptotic behaviour in non-drizzling clouds is found in both the droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.

Posted on 21 August 2014 | 12:00 am


Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo

Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo

Atmospheric Chemistry and Physics, 14, 8369-8388, 2014

Author(s): A. D. Robinson, N. R. P. Harris, M. J. Ashfold, B. Gostlow, N. J. Warwick, L. M. O'Brien, E. J. Beardmore, M. S. M. Nadzir, S. M. Phang, A. A. Samah, S. Ong, H. E. Ung, L. K. Peng, S. E. Yong, M. Mohamad, and J. A. Pyle

Short-lived halocarbons are believed to have important sources in the tropics, where rapid vertical transport could provide a significant source to the stratosphere. In this study, quasi-continuous measurements of short-lived halocarbons are reported for two tropical sites in Sabah (Malaysian Borneo), one coastal and one inland (rainforest). We present the observations for C2Cl4, CHBr3, CH2Br2* (actually ~80% CH2Br2 and ~20% CHBrCl2) and CH3I from November 2008 to January 2010 made using our μDirac gas chromatographs with electron capture detection (GC-ECD). We focus on the first 15 months of observations, showing over one annual cycle for each compound and therefore adding significantly to the few limited-duration observational studies that have been conducted thus far in southeast Asia. The main feature in the C2Cl4 behaviour at both sites is its annual cycle, with the winter months being influenced by northerly flow with higher concentrations, typical of the Northern Hemisphere, and with the summer months influenced by southerly flow and lower concentrations representative of the Southern Hemisphere. No such clear annual cycle is seen for CHBr3, CH2Br2* or CH3I. The baseline values for CHBr3 and CH2Br2* are similar at the coastal (overall median: CHBr3 1.7 ppt, CH2Br2* 1.4 ppt) and inland sites (CHBr3 1.6 ppt, CH2Br2* 1.1 ppt), but periods with elevated values are seen at the coast (overall 95th percentile: CHBr3 4.4 ppt, CH2Br2ast 1.9 ppt), presumably resulting from the stronger influence of coastal emissions. Overall median bromine values from [CHBr3 × 3] + [CH2Br2* × 2] are 8.0 ppt at the coast and 6.8 ppt inland. The median values reported here are largely consistent with other limited tropical data and imply that southeast Asia generally is not, as has been suggested, a hot spot for emissions of these compounds. These baseline values are consistent with the most recent emissions found for southeast Asia using the p-TOMCAT (Toulouse Off-line Model of Chemistry And Transport) model. CH3I, which is only observed at the coastal site, is the shortest-lived compound measured in this study, and the observed atmospheric variations reflect this, with high variability throughout the study period.

Posted on 21 August 2014 | 12:00 am


Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors

Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors

Atmospheric Chemistry and Physics, 14, 8343-8367, 2014

Author(s): B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne

The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the evaporative fraction (EF), i.e., the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by relating the before-noon EF to the frequency of afternoon precipitation over the contiguous US, through statistical analyses of multiple EF and precipitation data sets. We analyze remote-sensing data products (Global Land Evaporation: the Amsterdam Methodology (GLEAM) for EF, and radar precipitation from the NEXt generation weather RADar system (NEXRAD)), FLUXNET station data, and the North American Regional Reanalysis (NARR). Data sets agree on a region of positive relationship between EF and precipitation occurrence in the southwestern US. However, a region of strong positive relationship over the eastern US in NARR cannot be confirmed with observation-derived estimates (GLEAM, NEXRAD and FLUXNET). The GLEAM–NEXRAD data set combination indicates a region of positive EF–precipitation relationship in the central US. These disagreements emphasize large uncertainties in the EF data. Further analyses highlight that much of these EF–precipitation relationships could be explained by precipitation persistence alone, and it is unclear whether EF has an additional role in triggering afternoon precipitation. This also highlights the difficulties in isolating a land impact on precipitation. Regional analyses point to contrasting mechanisms over different regions. Over the eastern US, our analyses suggest that the EF–precipitation relationship in NARR is either atmospherically controlled (from precipitation persistence and potential evaporation) or driven by vegetation interception rather than soil moisture. Although this aligns well with the high forest cover and the wet regime of that region, the role of interception evaporation is likely overestimated because of low nighttime evaporation in NARR. Over the central and southwestern US, the EF–precipitation relationship is additionally linked to soil moisture variations, owing to the soil-moisture-limited climate regime.

Posted on 20 August 2014 | 12:00 am


Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

Atmospheric Chemistry and Physics, 14, 8323-8341, 2014

Author(s): M. Shiraiwa, T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Pöschl

The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC0). It varies in the range of 10–30 g mol?1, depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate.

Posted on 20 August 2014 | 12:00 am


Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for K?lauea volcano, Hawai`i

Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for K?lauea volcano, Hawai`i

Atmospheric Chemistry and Physics, 14, 8309-8322, 2014

Author(s): S. Beirle, C. Hörmann, M. Penning de Vries, S. Dörner, C. Kern, and T. Wagner

We present an analysis of SO2 column densities derived from GOME-2 satellite measurements for the K?lauea volcano (Hawai`i) for 2007–2012. During a period of enhanced degassing activity in March–November 2008, monthly mean SO2 emission rates and effective SO2 lifetimes are determined simultaneously from the observed downwind plume evolution and meteorological wind fields, without further model input. K?lauea is particularly suited for quantitative investigations from satellite observations owing to the absence of interfering sources, the clearly defined downwind plumes caused by steady trade winds, and generally low cloud fractions. For March–November 2008, the effective SO2 lifetime is 1–2 days, and K?lauea SO2 emission rates are 9–21 kt day−1, which is about 3 times higher than initially reported from ground-based monitoring systems.

Posted on 19 August 2014 | 12:00 am


Temperature influence on the natural aerosol budget over boreal forests

Temperature influence on the natural aerosol budget over boreal forests

Atmospheric Chemistry and Physics, 14, 8295-8308, 2014

Author(s): L. Liao, V.-M. Kerminen, M. Boy, M. Kulmala, and M. Dal Maso

We investigated the natural aerosol evolution of biogenic monoterpene emissions over the northern boreal forest area as a function of temperature using long-term field measurements of aerosol size distributions and back trajectories at two SMEAR (Station for Measuring Ecosystem–Atmosphere Relations) stations, SMEAR I and SMEAR II, in Finland. Similar to earlier studies, we found that new particles were formed via nucleation when originally clean air from the ocean entered the land, after which these particles continuously grew to larger sizes during the air mass transport. Both the travelling hour over land and temperature influenced the evolution of the particle number size distribution and aerosol mass yield from biogenic emissions. Average concentrations of nucleation mode particles were higher at lower temperatures, whereas the opposite was true for accumulation mode particles. Thus, more cloud condensation nuclei (CCN) may be formed at higher temperatures. The overall apparent aerosol yield, derived from the aerosol masses against accumulated monoterpene emissions, ranges from 13 to 37% with a minor, yet complicating, temperature dependence.

Posted on 19 August 2014 | 12:00 am


CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane

CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane

Atmospheric Chemistry and Physics, 14, 8269-8293, 2014

Author(s): L. Bruhwiler, E. Dlugokencky, K. Masarie, M. Ishizawa, A. Andrews, J. Miller, C. Sweeney, P. Tans, and D. Worthy

We describe an assimilation system for atmospheric methane (CH4), CarbonTracker-CH4, and demonstrate the diagnostic value of global or zonally averaged CH4 abundances for evaluating the results. We show that CarbonTracker-CH4 is able to simulate the observed zonal average mole fractions and capture inter-annual variability in emissions quite well at high northern latitudes (53–90° N). In contrast, CarbonTracker-CH4 is less successful in the tropics where there are few observations and therefore misses significant variability and is more influenced by prior flux estimates. CarbonTracker-CH4 estimates of total fluxes at high northern latitudes are about 81 ± 7 Tg CH4 yr?1, about 12 Tg CH4 yr?1 (13%) lower than prior estimates, a result that is consistent with other atmospheric inversions. Emissions from European wetlands are decreased by 30%, a result consistent with previous work by Bergamaschi et al. (2005); however, unlike their results, emissions from wetlands in boreal Eurasia are increased relative to the prior estimate. Although CarbonTracker-CH4 does not estimate an increasing trend in emissions from high northern latitudes for 2000 through 2010, significant inter-annual variability in high northern latitude fluxes is recovered. Exceptionally warm growing season temperatures in the Arctic occurred in 2007, a year that was also anonymously wet. Estimated emissions from natural sources were greater than the decadal average by 4.4 ± 3.8 Tg CH4 yr?1 in 2007.

CarbonTracker-CH4 estimates for temperate latitudes are only slightly increased over prior estimates, but about 10 Tg CH4 yr?1 is redistributed from Asia to North America. This difference exceeds the estimated uncertainty for North America (±3.5 Tg CH4 yr−1). We used time invariant prior flux estimates, so for the period from 2000 to 2006, when the growth rate of global atmospheric CH4 was very small, the assimilation does not produce increases in natural or anthropogenic emissions in contrast to bottom-up emission data sets. After 2006, when atmospheric CH4 began its recent increases, CarbonTracker-CH4 allocates some of the increases to anthropogenic emissions at temperate latitudes, and some to tropical wetland emissions. For temperate North America the prior flux increases by about 4 Tg CH4 yr?1 during winter when biogenic emissions are small. Examination of the residuals at some North American observation sites suggests that increased gas and oil exploration may play a role since sites near fossil fuel production are particularly hard for the inversion to fit and the prior flux estimates at these sites are apparently lower and lower over time than what the atmospheric measurements imply.

The tropics are not currently well resolved by CarbonTracker-CH4 due to sparse observational coverage and a short assimilation window. However, there is a small uncertainty reduction and posterior emissions are about 18% higher than prior estimates. Most of this increase is allocated to tropical South America rather than being distributed among the global tropics. Our estimates for this source region are about 32 ± 4 Tg CH4 yr?1, in good agreement with the analysis of Melack et al. (2004) who obtained 29 Tg CH4 yr?1 for the most productive region, the Amazon Basin.

Posted on 19 August 2014 | 12:00 am


Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane

Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane

Atmospheric Chemistry and Physics, 14, 8255-8267, 2014

Author(s): N. Kivekäs, A. Massling, H. Grythe, R. Lange, V. Rusnak, S. Carreno, H. Skov, E. Swietlicki, Q. T. Nguyen, M. Glasius, and A. Kristensson

Particles in the atmosphere are of concern due to their toxic properties and effects on climate. In coastal areas, ship emissions can be a significant anthropogenic source. In this study we investigated the contribution from ship emissions to the total particle number and mass concentrations at a remote location. We studied the particle number concentration (12 to 490 nm in diameter), the mass concentration (12 to 150 nm in diameter) and number and volume size distribution of aerosol particles in ship plumes for a period of 4.5 months at Høvsøre, a coastal site on the western coast of Jutland in Denmark. During episodes of western winds, the site is about 50 km downwind of a major shipping lane and the plumes are approximately 1 hour old when they arrive at the site. We have used a sliding percentile-based method for separating the plumes from the measured background values and to calculate the ship plume contribution to the total particle number and PM0.15 mass concentration (mass of particles below 150 nm in diameter, converted from volume assuming sphericity) at the site. The method is not limited to particle number or volume concentration, but can also be used for different chemical species in both particle and gas phase. The total number of analyzed ship plumes was 726, covering on average 19% of the time when air masses were arriving at the site over the shipping lane. During the periods when plumes were present, the particle concentration exceeded the background values on average by 790 cm?3 by number and 0.10 ?g m?3 by mass. The corresponding daily average values were 170 cm?3 and 0.023 ?g m?3, respectively. This means that the ship plumes contributed between 11 and 19% to the particle number concentration and between 9 and 18% to PM0.15 during days when air was arriving over the shipping lane. The estimated annual contribution from ship plumes, where all wind directions were included, was in the range of 5–8% in particle number concentration and 4–8% in PM0.15.

Posted on 19 August 2014 | 12:00 am





Other notes:



 Information about this site:


 
The author- or copyrights of the listed Internet pages are held by the respective authors or site operators, who are also responsible for the content of the presentations.
 
To see your page listed here: Send us an eMail! Condition: Subject-related content on chemistry, biochemistry and comparable academic disciplines!
Citation:
http://www.internetchemistry.com/rss/atmospheric-chemistry.php
Keywords:
Chronological list of recent articles on Chemistry, Atmospheric Chemistry, Atmospheric Chemistry and Physics.
Update:
28.09.2013


Internetchemistry ChemLin © 1996 - 2013 A. J.